Giải phương trình \(\sqrt{29-x}+\sqrt{x+3}=x^2-26x+177\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Có vẻ giống bài tổng quat của sqing bên AoPS. Mặc dù sqing nói chưa biết bài tổng quát này đúng hay sai:
Cho a, b, c, d là các số thực và \(k\ge3\). Chứng minh (hay phản chứng minh):
\(\left(a^2+k\right)\left(b^2+k\right)\left(c^2+k\right)\left(d^2+k\right)\ge\left(k+1\right)^2\left(a+b+c+d+k-3\right)^2\)
Nguồn: https://artofproblemsolving.com/community/c6h19666p10662432
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(_{\hept{\begin{cases}x^2y+2y+x=4xy\\\frac{1}{x^2}+\frac{1}{xy}+\frac{x}{y}=3\left(2\right)\end{cases}}}\left(1\right)\)
Đk: x; y khác 0
(1) <=> \(x+\frac{2}{x}+\frac{1}{y}=4\Leftrightarrow\left(x+\frac{1}{x}\right)+\left(\frac{1}{x}+\frac{1}{y}\right)=4\) (3)
(2) <=> \(\left(\frac{1}{x^2}+1\right)+\left(\frac{1}{xy}+\frac{x}{y}\right)=4\)
\(\Leftrightarrow\frac{\left(1+x^2\right)}{x^2}+\frac{\left(1+x^2\right)}{xy}=4\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)\left(\frac{1}{x}+\frac{1}{y}\right)=4\) (4)
Từ (3) ; (4) ta có:
\(\hept{\begin{cases}x+\frac{1}{x}=2\\\frac{1}{x}+\frac{1}{y}=2\end{cases}}\Leftrightarrow x=y=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo đề ta có hệ :
\(\hept{\begin{cases}2x-y=3\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=-\frac{1}{3}\end{cases}}\)
=> \(\left(2m-1\right)\frac{4}{3}-\frac{1}{3}=-0,5\)
<=> m = 7/16
![](https://rs.olm.vn/images/avt/0.png?1311)
Cm \(3\left(a^2b+b^2c+c^2a\right)\left(a^2c+b^2a+c^2b\right)\ge abc\left(a+b+c\right)^3\)
Do 2 vế BĐT đồng bậc nên ta chuẩn hóa \(a+b+c=3\)
BĐT <=> \(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3\right)+a^2b^2c^2\left(a+b+c\right)\right]\ge27abc\)
<=>\(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\right)\right]\ge27abc\)
Áp dụng BĐT Schur ta có:
\(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\ge ab^2c\left(ab+bc\right)+a^2bc\left(ab+ac\right)+abc^2\left(ac+bc\right)\)
Khi đó BĐT
<=>\(3\left(a^3+b^3+c^3\right)+3a^2\left(b+c\right)+3b^2\left(a+c\right)+3c^2\left(a+b\right)\ge27\)
<=> \(3\left(a^3+b^3+c^3\right)+3a^2\left(3-a\right)+3b^2\left(3-b\right)+3c^2\left(3-c\right)\ge27\)
<=> \(a^2+b^2+c^2\ge3\) luôn đúng do \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=3\)( ĐPCM)
Dấu bằng xảy ra khi a=b=c
Bài 2
Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
=> \(VT\ge\frac{|a+1-b|+|b+1-c|+|c+1-a|}{\sqrt{2}}\)
Áp dụng BĐT \(|x|+|y|+|z|\ge|x+y+z|\)
=> \(VT\ge\frac{|a+1-b+b+1-c+c+1-a|}{\sqrt{2}}=\frac{3}{\sqrt{2}}\)(ĐPCM)
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
C A B M O H
hình hơi chênh lệch, bạn thông cảm vì mình vẽ phần mềm hình olm gà lắm
Xét \(\Delta AMC\)và \(\Delta BCM\)có :
\(\widehat{M}\)( chung ) ; \(\widehat{ACM}=\widehat{CBM}\left(=\frac{1}{2}sđ\widebat{AC}\right)\)
\(\Rightarrow\Delta AMC~\Delta CMB\left(g.g\right)\)
\(\Rightarrow\frac{AM}{MC}=\frac{MC}{MB}\Rightarrow MC^2=MA.MB\)
\(\Rightarrow MB=\frac{MC^2}{MA}=4a\)
Ta có : \(AB=MB-AM=4a-a=3a\)
Xét \(\Delta OCM\)có \(OC\perp CM\) :
\(\Rightarrow S_{OCM}=\frac{1}{2}OC.MC=\frac{1}{2}CH.OM\)
\(\Rightarrow CH=\frac{OC.MC}{OM}=\frac{\frac{AB}{2}.MC}{\frac{AB}{2}+AM}=\frac{6}{5}a\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Chu vi của bánh xe là:
70 x 3,14 = 219,8 (cm)
Khoảng cách từ nhà AN đến trường là:
984 x 219,8 = 216283,2 cm
Đáp số:...
\(\sqrt{29-x}+\sqrt{x+3}=x^2-26x+177\left(1\right)\)
ĐK -3 =<x =<29
Với mọi a,b >=0 ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)
Thay \(a=\sqrt{29-x};b=\sqrt{x+3}\)ta có:
\(\sqrt{29-x}+\sqrt{x+3}\le\sqrt{2\left(29-x+x+3\right)}=8\)
\(x^2-26x+177=\left(x-13\right)^2+8\ge8\)
\(\Rightarrow\sqrt{29-x}+\sqrt{x+3}\le x^2-26x+177\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\sqrt{29-x}=\sqrt{x+3}\\x-13=0\end{cases}\Leftrightarrow x=13}\)
Do đó (1) <=> x=13 (tm)