Cho tam giác ABC vuông tại A , tia phân giác góc CAB cắt BC tại D , kẻ DE vuông góc AC ( E thuộc AC ) , kẻ DF vuông góc AB ( F thuộc AB )
a) Cm AEDF là hình vuông
b)Tính chu hình vuông AEDF biết AD = 5cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
ĐKXĐ : x ≠ 2
Ta có : \(\frac{x^3-2x^2+4}{x-2}=\frac{x^2\left(x-2\right)+4}{\left(x-2\right)}=\frac{x^2\left(x-2\right)}{x-2}+\frac{4}{x-2}=x^2+\frac{4}{x-2}\)
Vì x nguyên => x2 nguyên
=> Để phân thức có giá trị nguyên thì \(\frac{4}{x-2}\)có giá trị nguyên
=> \(4⋮\left(x-2\right)\)
=> \(\left(x-2\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
x-2 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 3 | 1 | 4 | 0 | 6 | -2 |
Các giá trị trên đều tmđk x ≠ 2
Vậy x ∈ { -2 ; 0 ; 1 ; 3 ; 4 ; 6 }
Bài 1 :
a, \(\left(x-1\right)^2+\left(x+1\right)^2-2x^2=x^2-2x+1+x^2+2x+1-2x^2=2\)
b, \(x^3+2x^2y+xy^2-9x=x\left(x^2+2xy+y^2-9\right)=x\left[\left(x+y\right)^2-9\right]=x\left(x+y-3\right)\left(x+y+3\right)\)
Bài 2 :
a, \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)=8x^3-4x^2y+2xy^2-4x^2y+2xy^2-y^3\)
\(=8x^3-8x^2y+4xy^2-y^3\)
b, \(6x^5y^2-9x^4y^3:3x^3y^2=\left(6x^5y^2:3x^3y^2\right)+\left(-9x^4y^3:3x^3y^2\right)=2x^2-3xy\)
a, \(\frac{14x^5y^3z^2}{21x^2y^4z}=\frac{2x^3z}{3y}\)
b, \(\frac{25x^2y\left(x+1\right)^3}{30xy\left(x+1\right)}=\frac{5x\left(x+1\right)^2}{6}\)
c, \(\frac{30x\left(5-x\right)}{12\left(x-5\right)^3}=\frac{-30x\left(x-5\right)}{12\left(x-5\right)^3}=\frac{-5x}{2\left(x-5\right)^2}\)
d, \(\frac{60xy\left(3x-2\right)^3}{45xy^2\left(2-3x\right)}=\frac{60xy\left(3x-2\right)^3}{-45xy^2\left(3x-2\right)}=-\frac{4\left(3x-2\right)^2}{3y}\)