K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2020
Giúp mình với cảm ơn
29 tháng 4 2020

Ta có: 

\(15\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)=10\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+2014\)

\(\le10\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+2014\)

=> \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\le\frac{2014}{5}\)

\(P=\frac{1}{\sqrt{5x^2+2xy+2yz}}+\frac{1}{\sqrt{5y^2+2yz+2zx}}+\frac{1}{\sqrt{5z^2+2zx+2xy}}\)

=> \(P\sqrt{\frac{2014}{135}}=\frac{1}{\sqrt{5x^2+2xy+2yz}.\sqrt{\frac{135}{2014}}}\)

\(+\frac{1}{\sqrt{5y^2+2yz+2zx}\sqrt{\frac{135}{2014}}}+\frac{1}{\sqrt{\frac{135}{2014}}\sqrt{5z^2+2zx+2xy}}\)

\(\le\frac{1}{2}\left(\frac{1}{5x^2+2xy+2yz}+\frac{2014}{135}+\frac{1}{5y^2+2yz+2zx}+\frac{2024}{135}+\frac{1}{5z^2+2yz+2zx}+\frac{2014}{135}\right)\)

\(\le\frac{1}{2}\left[\frac{1}{81}\left(\frac{5}{x^2}+\frac{2}{xy}+\frac{2}{yz}\right)+\frac{1}{81}\left(\frac{5}{y^2}+\frac{2}{yz}+\frac{2}{zx}\right)+\frac{1}{81}\left(\frac{5}{z^2}+\frac{2}{zx}+\frac{2}{xy}\right)+\frac{2014}{45}\right]\)

\(=\frac{5}{162}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+\frac{2}{81}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+\frac{1007}{45}\)

\(\le\frac{5}{162}.\frac{2014}{5}+\frac{2}{81}.\frac{2014}{5}+\frac{1007}{45}=\frac{2014}{45}\)

=> \(P\le\frac{2014}{45}:\sqrt{\frac{2014}{135}}=3\sqrt{\frac{2014}{135}}\)

Dấu "=" xảy ra <=> x = y = z = \(\sqrt{\frac{15}{2014}}\)

30 tháng 4 2020

hãy giúp tôi các bạn trẻ

7 tháng 5 2020

Gọi  \(AE\) là đường cao của  \(\Delta ABC\)và  CD∩AE=F

\(\Delta CBH\) có E,M lần lượt là trung điểm \(CB,CH\)

\(\Rightarrow EM//BH\)

\(\Rightarrow EM\perp DC\)

Áp dụng định lí Menelaus cho tam giác ABE với cát tuyến CFD ta được: 

\(\frac{AD}{BD}.\frac{BC}{EC}.\frac{EF}{AF}=1\)

\(\Leftrightarrow FA=FE\)

\(\Delta CEF\)vuông tại \(E\) có đường cao \(EM\)

\(\Rightarrow\hept{\begin{cases}\widehat{MFE}=\widehat{MEC}\Rightarrow\widehat{MFA}=\widehat{MEB}\\\frac{ME}{MF}=\frac{EC}{EF}=\frac{EB}{FA}\end{cases}}\)

\(\Delta MEB\)và \(\Delta MFA\)có:

\(\hept{\begin{cases}\widehat{MFA}=\widehat{MEB\left(cmt\right)}\\\frac{ME}{MF}=\frac{EB}{FA}\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta MEB\)đồng dạng \(\Delta MFA\)

\(\Rightarrow\widehat{FMA}=\widehat{EMA}\)

\(\widehat{AMB}=\widehat{DMB}+\widehat{AMF}=\widehat{DMB}+\widehat{BME}=90^0\)

\(\Rightarrow MB\perp MA\)

hay \(\widehat{ANB}=90^0\left(ĐPCM\right)\)

9 tháng 5 2020

A B C D E N

Xét tứ giác CDNB có \(\widehat{DNB}+\widehat{BCD}=90^o+90^o=180^o\) nên là tứ giác nội tiếp ( 1 )

Xét tứ giác ANBD có \(\widehat{DAB}=\widehat{DNB}=90^o\)nên là tứ giác nội tiếp ( 2 )

Từ ( 1 ) và ( 2 ) suy ra 5 điểm A,N,B,C,D cùng thuộc 1 đường tròn

suy ra tứ giác ANCD nội tiếp đường tròn

Người 1 : 3 giờ 30 phút

Người 2 : 8 giờ 30 phút

8 tháng 5 2020

ajnomoto

6 tháng 5 2020

bạn viết dấu hộ mình để m trả lời nhá .

em lớp 6 nên ko trả lời đc xin lỗi chị nha chúc chị học tốt