Cho tam giác ABC cân tại A nội tiếp đường trong tâm O. Gọi D là trung điểm của AB. E là trọng tâm của tam giác ACD. Cmr OE vuông góc với CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(BT=\frac{a^2\left(b-c\right)+b^2c-b^2a+c^2a-c^2b}{a^4\left(b^2-c^2\right)+b^4c^2-b^4a^2+c^4a^2-c^4b^2}\)
\(=\frac{a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)}{a^4\left(b^2-c^2\right)+b^2c^2\left(b^2-c^2\right)-\left(b^4-c^4\right)a^2}\)
\(=\frac{\left(b-c\right)\left(a^2+bc-a\left(b+c\right)\right)}{\left(b^2-c^2\right)\left(a^4+b^2c^2-a^2\left(b^2+c^2\right)\right)}\)
\(=\frac{\left(a-b\right)\left(a-c\right)}{\left(b+c\right)\left(a^2-b^2\right)\left(a^2-c^2\right)}\)
\(=\frac{1}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)
\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
= \(\frac{a^2\left(b-c\right)+b^2c-c^2b-a\left(b^2-c^2\right)}{a^4\left(b^2-c^2\right)+b^4c^2-c^4b^2-a^2\left(a^4-b^4\right)}\)
= \(\frac{\left(b-c\right)\left(a-b\right)\left(c-a\right)}{\left(b^2-c^2\right)\left(a^2-b^2\right)\left(c^2-a^2\right)}\)
= \(\frac{1}{\left(b+c\right)\left(a+b\right)\left(c+a\right)}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Phương trình có hai nghiệm fan biệt <=> \(\Delta>0\)
<=> \(\left(m-1\right)^2+4m>0\Leftrightarrow\left(m+1\right)^2>0\)
<=> \(m\ne-1\)
Áp dụng viet ta có: \(x_1x_2=-m;x_1+x_2=m-1\)
Khi đó;
\(x_1\left(3-x_2\right)+20\ge3\left(3-x_2\right)\)
<=> \(3\left(x_1+x_2\right)-x_1x_2+11\ge0\)
=>\(3\left(m-1\right)+m+11\ge0\)
<=> \(m\ge-2\)
Ta có: \(\Delta=\left(m-1\right)^2+4m=\left(m+1\right)^2\)
Phương trình có 2 nghiệm phân biệt x1;x2 khi \(\Delta\)>0 <=> m\(\ne\)-1
Ta có: \(\hept{\begin{cases}x_1+x_2=m+1\\x_1\cdot x_2=-m\end{cases}}\)
Theo bài ra ta có:
\(x_1\left(3-x_2\right)+20\ge3\left(3-x_2\right)-x_1x_2\ge-11\)
\(\Leftrightarrow3\left(m-1\right)+m\ge-11\)
<=> \(4m\ge-8\Leftrightarrow m\ge-2\)
Vậy \(m\ge-2;m>-1\)thì phương trình có 2 nghiệm phân biệt thỏa mãn yêu cầu đề bài
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\frac{a}{2a+b+c}=\frac{a}{\left(a+b\right)\left(a+c\right)}\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)
\(\frac{b}{a+2b+c}=\frac{b}{\left(a+b\right)\left(b+c\right)}\le\frac{b}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)
\(\frac{c}{a+b+2c}=\frac{c}{\left(a+c\right)\left(b+c\right)}\le\frac{c}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)
Cộng vế theo vế:
=> \(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le\frac{1}{4}\left(1+1+1\right)=\frac{3}{4}\)
Dấu "=" xảy ra <=> a = b = c
Cách 1:
Biến đổi tương đương bất đẳng thức cần chứng minh
\(1-\frac{a}{2b+b+c}+1-\frac{b}{a+2b+c}+1-\frac{c}{a+b+2c}\ge\frac{9}{4}\)
\(\Leftrightarrow\frac{a+b+c}{2a+b+c}+\frac{a+b+c}{a+2b+c}+\frac{a+b+c}{a+b+2c}\ge\frac{9}{4}\)
\(\Leftrightarrow4\left(a+b+c\right)\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\ge9\)
Đặt x=2a+b+c; y=a+2b+c; z=a+b+2c => x+y+z=4(a+b+c)
Khi đó đẳng thức trên trở thành
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-2\right)+\left(\frac{y}{z}+\frac{z}{y}-2\right)+\left(\frac{x}{z}+\frac{z}{x}-2\right)\ge0\)
\(\Leftrightarrow\frac{\left(x-y\right)^2}{2xy}+\frac{\left(y-z\right)^2}{2yz}+\frac{\left(z-x\right)^2}{2xz}\ge0\)
BĐT cuối luôn đúng
Vậy BĐT được chứng minh. Dấu "=" xảy ra <=> a=b=c
Cách 2:
Đặt x=2a+b+c; y=a+2b+c; z=a+b+2c
=> \(\hept{\begin{cases}a=\frac{2x-y-z}{4}\\b=\frac{3y-x-z}{4}\\c=\frac{3z-x-y}{4}\end{cases}}\)
BĐT cần chứng minh được viết lại thành
\(\frac{3x-y-z}{4x}+\frac{3y-x-z}{4y}+\frac{3z-x-z}{4z}\le\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{z}{x}\right)\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{z}{x}\ge6\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-2\right)+\left(\frac{y}{z}+\frac{z}{y}-2\right)+\left(\frac{x}{z}+\frac{z}{x}-2\right)\ge0\)
\(\Leftrightarrow\frac{\left(x-y\right)^2}{2xy}+\frac{\left(y-z\right)^2}{2yz}+\frac{\left(z-x\right)^2}{2zx}\ge0\)
BĐT cuối luôn đúng
Vậy BĐT được chứng minh. Dấu "=" <=> a=b=c
Cho phương trinhf
\(x^2+m-2=mx+\)xx
x laf ẩn số
Chứng tỏ phương trinfh luôn có 2 nghiệm phân biệt x1,x2
![](https://rs.olm.vn/images/avt/0.png?1311)
x2 + m - 2= mx + xx
= xx- xx = mx + 2 - m
0= m(x-1) + 2
Suy ra m(x-1)= -2
Từ đó ta lập bảng thì ta thu được các giá trị khác biệt của x-1 suy ra ta có luôn có 2 nghiệm phân biệt x1 và x2
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\frac{c}{a}=-\frac{2}{2}=-1< 0\)
=> Phương trình luôn có 2 ngiệm trái dấu \(x_1;x_2\)
Theo định lí viet: \(x_1x_2=-1;x_1+x_2=\frac{1-m}{2}\)
Ta có: \(\left(x_1+\frac{1}{2}x^2_1-x^3_1\right)\left(x_2+\frac{1}{2}x^2_2-x^3_2\right)=4\)
<=> \(x_1x_2\left(x_1^2-\frac{1}{2}x_1-1\right)\left(x_2^2-\frac{1}{2}x_2-x_2\right)=4\)
<=> \(\left(2x_1^2-x_1-2\right)\left(2x_2^2-x_2-2\right)=-16\)
<=> \(\left(2x_1x_2\right)^2-2x_1^2x_2-4x_1^2-2x_1x_2^2+x_1x_2+2x_2-4x_2^2+2x_2+4=-16\)
<=> \(4+2x_1-4x_1^2+2x_2-1+2x_2-4x_2^2+2x_2+4=-16\)
<=> \(4x_1^2+4x_2^2-4x_1-4x_2=23\)
<=> \(4\left(x_1+x_2\right)^2-4\left(x_1+x_2\right)=15\)
<=> \(\orbr{\begin{cases}x_1+x_2=\frac{5}{2}\\x_1+x_2=-\frac{3}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1-m}{2}=\frac{5}{2}\\\frac{1-m}{2}=-\frac{3}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=-4\\m=4\end{cases}}\)
Vậy:....
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Delta=\left(m-1\right)^2-4.2.\left(-2\right)=\left(m-1\right)^2+16>0\)
nên PT luôn có 2 nghiệm phân biệt
Mình ms học lp 6 nên sai thông cảm
Xác định : a = 2 ; b = m-1 ; c = -2
Ta có : \(\Delta=b^2-4ac=\left(m-1\right)^2-4.2.\left(-2\right)\)
\(=\left(m-1\right)^2+16\)
Vì \(\hept{\begin{cases}\left(m-1\right)^2\ge0\\16>0\end{cases}=>\left(m-1\right)^2}+16>0\)
Nên pt có 2 nghiệm phân biệt
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi A(xA;yA) là điểm thuộc đồ thị (P) và có tung độ gấp đôi hoành độ
=> \(y_A=2x_A\)nên ta có: \(2x_A=x_A^2\)
\(\Leftrightarrow x_A^2-2x_A=0\Leftrightarrow\orbr{\begin{cases}x_A=0\\x_A-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x_A=0\Rightarrow y_A=0\\x_A=2\Rightarrow y_A=4\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
(P) đi qua A(-1;1)
thay x=-1 ; y =1 vào (P) :
<=> 1=a . (-1)2 <=> a= 1
(P) : y=x2
hình tự vẽ nha. lười quá
Kẻ trung tuyến CM,DN của \(\Delta ACD\)( M,N \(\in\)AB,AC )
AM và DN cắt nhau ở E. gọi Giao điểm của CD và AO là I
dễ dàng suy ra I là trọng tâm của \(\Delta ABC\)
Ta có : \(\frac{CE}{CM}=\frac{CI}{CD}=\frac{2}{3}\Rightarrow EI//AB\)
Mà \(OD\perp AB\)nên \(EI\perp OD\)( 1 )
Lại có : \(OI\perp BC\)mà BC // DN nên \(OI\perp DN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra I là trực tâm của \(\Delta ODE\), do đó OE \(\perp\)DI
Hay \(OE\perp CD\)