Bai 9: tren mot mieng dat hinh vuong , nguoi ta dao mot cai ao ca hinh vuong o mot goc cua mieng dat , biet dien tich cua phan dat con lai sau khi dao ao la 2304 m^2 , va canh cua ao kem canh cua mieng dat 32m . Hay tinh dien tich ao ca
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy mẫu số, chứ không phải lấy tử số em nhé!
a: \(-\dfrac{15}{19}=-1+\dfrac{4}{19}\)
\(-\dfrac{37}{41}=-1+\dfrac{4}{41}\)
\(-\dfrac{5}{9}=-1+\dfrac{4}{9}\)
\(\dfrac{23}{-27}=-\dfrac{23}{27}=-1+\dfrac{4}{27}\)
\(-\dfrac{7}{11}=-1+\dfrac{4}{11}\)
mà \(\dfrac{4}{41}< \dfrac{4}{27}< \dfrac{4}{19}< \dfrac{4}{11}< \dfrac{4}{9}\)
nên \(-\dfrac{37}{41}< -\dfrac{23}{27}< -\dfrac{15}{19}< -\dfrac{7}{11}< -\dfrac{5}{9}\)
mà \(-\dfrac{37}{41}< -\dfrac{76}{89}< -\dfrac{23}{27}\)
nên \(-\dfrac{37}{41}< -\dfrac{76}{89}< -\dfrac{23}{27}< -\dfrac{15}{19}< -\dfrac{7}{11}< -\dfrac{5}{9}\)
\(12⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;6;-2;8;-4;14;-10\right\}\)
\(D=\dfrac{24\cdot47-23}{24+47\cdot23}\cdot\dfrac{3+\dfrac{3}{7}-\dfrac{3}{11}+\dfrac{3}{1001}-\dfrac{3}{13}}{\dfrac{9}{1001}-\dfrac{9}{13}+\dfrac{9}{7}-\dfrac{9}{11}+9}\\ =\dfrac{\left(23+1\right)\cdot47-23}{24+47\cdot23}\cdot\dfrac{3+\dfrac{3}{7}-\dfrac{3}{11}+\dfrac{3}{1001}-\dfrac{3}{13}}{9+\dfrac{9}{7}-\dfrac{9}{11}+\dfrac{9}{1001}-\dfrac{9}{13}}\\ =\dfrac{23\cdot47+47-23}{24+47\cdot23}\cdot\dfrac{3+\dfrac{3}{7}-\dfrac{3}{11}+\dfrac{3}{1001}-\dfrac{3}{13}}{3\left(3+\dfrac{3}{7}-\dfrac{3}{11}+\dfrac{3}{1001}-\dfrac{3}{13}\right)}\\ =\dfrac{23\cdot47+24}{23\cdot47+24}\cdot\dfrac{1}{3}\\ =1\cdot\dfrac{1}{3}=\dfrac{1}{3}\)
Sửa đề: \(\dfrac{1}{5}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
Đặt \(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
\(\dfrac{1}{5}-\dfrac{1}{6}< \dfrac{1}{5\cdot6}< \dfrac{1}{5^2}< \dfrac{1}{4\cdot5}=\dfrac{1}{4}-\dfrac{1}{5}\)
\(\dfrac{1}{6}-\dfrac{1}{7}< \dfrac{1}{6\cdot7}< \dfrac{1}{6^2}< \dfrac{1}{5\cdot6}=\dfrac{1}{5}-\dfrac{1}{6}\)
...
\(\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{100\cdot101}< \dfrac{1}{100^2}< \dfrac{1}{100\cdot99}=\dfrac{1}{99}-\dfrac{1}{100}\)
Do đó: \(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=>\(\dfrac{1}{5}-\dfrac{1}{101}< A< \dfrac{1}{4}-\dfrac{1}{100}\)
=>\(\dfrac{1}{5}< A< \dfrac{1}{4}\)
A = \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\) + \(\dfrac{1}{7^2}\) + ... + \(\dfrac{1}{100^2}\)
\(\dfrac{1}{5.6}\) < \(\dfrac{1}{5^2}\) < \(\dfrac{1}{4.5}\)
\(\dfrac{1}{6.7}\) < \(\dfrac{1}{6^2}\) < \(\dfrac{1}{5.6}\)
\(\dfrac{1}{7.8}\) < \(\dfrac{1}{7^2}\) < \(\dfrac{1}{6.7}\)
......................
\(\dfrac{1}{100.101}\) < \(\dfrac{1}{100^2}\) < \(\dfrac{1}{99.100}\)
Cộng vế với vế ta có:
\(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + ... + \(\dfrac{1}{100.101}\)< \(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{100^2}\)<\(\dfrac{1}{4.5}\)+\(\dfrac{1}{5.6}\)+...+\(\dfrac{1}{99.100}\)
\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\) < \(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{100^2}\)< \(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+...+\(\dfrac{1}{99}\)-\(\dfrac{1}{100}\)
\(\dfrac{1}{5}\) - \(\dfrac{1}{101}\) < \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{100^2}\) < \(\dfrac{1}{4}\) - \(\dfrac{1}{100}\)
\(\dfrac{6}{30}\) - \(\dfrac{1}{101}\) < \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\)+ .... + \(\dfrac{1}{100^2}\) < \(\dfrac{1}{4}\) - \(\dfrac{1}{100}\) < \(\dfrac{1}{4}\)
\(\dfrac{5}{30}\) +( \(\dfrac{1}{30}\) - \(\dfrac{1}{101}\)) < \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{100^2}\) < \(\dfrac{1}{4}\)
\(\dfrac{1}{6}\) + (\(\dfrac{1}{30}\) - \(\dfrac{1}{101}\)) < \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{100^2}\) < \(\dfrac{1}{4}\)
Vì \(\dfrac{1}{30}\) > \(\dfrac{1}{101}\) ⇒ \(\dfrac{1}{30}\) - \(\dfrac{1}{101}\) > 0 ⇒ \(\dfrac{1}{6}\) + (\(\dfrac{1}{30}\) - \(\dfrac{1}{101}\)) > \(\dfrac{1}{6}\)
Vậy \(\dfrac{1}{6}\) < \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{100^2}\) < \(\dfrac{1}{4}\) (đpcm)
Chiều rộng là:
\(\sqrt{\dfrac{36}{4}}=3\left(cm\right)\)
Chiều dài hình chữ nhật là 3x4=12(cm)
Nửa chu vi hình chữ nhật là 12+3=15(cm)
Đây là toán nâng cao chuyên đề chu vi diện tích các hình, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Chia hình chữ nhật thành các hình vuông nhỏ bằng nhau và có cạnh bằng chiều rộng của hình chữ nhật, khi đó số hình vuông nhỏ là:
4 x 1 = 4 (hình)
Diện tích mỗi hình vuông nhỏ là: 36 : 4 = 9 (cm2)
Vì 9 = 3 x 3
Vậy cạnh hình vuông cũng là chiều rộng của hình chữ nhật là: 3 cm
Chiều dài của hình chữ nhật là: 3 x 4 = 12 (cm)
Nửa chu vi của hình chữ nhật là: 12 + 3 = 15 (cm)
Đáp số: 15 cm
\(\left|\dfrac{4}{3}x-\dfrac{1}{4}\right|>=0\forall x\)
=>\(\left|\dfrac{4}{3}x-\dfrac{1}{4}\right|-\dfrac{2}{11}>=-\dfrac{2}{11}\forall x\)
Dấu '=' xảy ra khi \(\dfrac{4}{3}x-\dfrac{1}{4}=0\)
=>\(\dfrac{4}{3}x=\dfrac{1}{4}\)
=>\(x=\dfrac{1}{4}:\dfrac{4}{3}=\dfrac{3}{16}\)
A = |\(\dfrac{4}{3}\)\(x\) - \(\dfrac{1}{4}\)| - \(\dfrac{2}{11}\)
Vì |\(\dfrac{4}{3}\)\(x\) - \(\dfrac{1}{4}\)| ≥ 0 ∀ \(x\)
|\(\dfrac{4}{3}x\) - \(\dfrac{1}{4}\)| - \(\dfrac{2}{11}\) ≥ - \(\dfrac{2}{11}\) dấu bằng xảy ra khi : \(\dfrac{4}{3}x\) - \(\dfrac{1}{4}\) = 0
⇒ \(\dfrac{4}{3}\)\(x\) = \(\dfrac{1}{4}\) ⇒ \(x\) = \(\dfrac{1}{4}\) : \(\dfrac{4}{3}\) ⇒ \(x\) = \(\dfrac{3}{16}\)
Vậy giá trị nhỏ nhất của biểu thức là - \(\dfrac{2}{11}\) khi \(x=\dfrac{3}{16}\)
\(\dfrac{5}{x}-\dfrac{2}{y}=\dfrac{3}{2}\)
=>\(\dfrac{5x-2y}{xy}=\dfrac{3}{2}\)
=>2(5x-2y)=3xy
=>10x-4y-3xy=0
=>10x-3xy-4y=0
=>x(10-3y)-4y=0
=>\(-3x\left(y-\dfrac{10}{3}\right)-4y+\dfrac{40}{3}=0\)
=>\(-3x\left(y-\dfrac{10}{3}\right)-4\left(y-\dfrac{10}{3}\right)=0\)
=>\(\left(-3x-4\right)\left(y-\dfrac{10}{3}\right)=0\)
=>\(\left\{{}\begin{matrix}-3x-4=0\\y-\dfrac{10}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{3}\\y=\dfrac{10}{3}\end{matrix}\right.\)
Lời giải:
Chiều rộng thửa ruộng:
$60\times 40:100=24$ (m)
Diện tích thửa ruộng:
$60\times 24=1440$ (m2)
Thửa ruộng đó thu hoạch được số kg khoai tây là:
$1440:100\times 240=3456$ (kg)
Số tiền thu được khi bán khoai tây là:
$3456\times 25000=86400000$ (đồng)
Gọi độ dài cạnh của ao là x(m)
(ĐIều kiện: x>0)
Độ dài cạnh của miếng đất là x+32(m)
Diện tích miếng đất là \(\left(x+32\right)^2\left(m^2\right)\)
Diện tích ao là \(x^2\left(m^2\right)\)
Diện tích phần đất còn lại là 2304m2 nên ta có:
\(\left(x+32\right)^2-x^2=2304\)
=>\(\left(x+32-x\right)\left(x+32+x\right)=2304\)
=>32(2x+32)=2304
=>2x+32=2304:32=72
=>2x=40
=>x=20(nhận)
Diện tích ao là \(20^2=400\left(m^2\right)\)
Đây là toán nâng cao chuyên đề ciện tích hình ghép, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp dựng thêm hình phụ.
Giải
+ Mảnh đất hình vuông MNOL dựng một cái ao hình vuông ở góc vườn là hình vuông: PMRQ
+ Kéo dài PQ về phía Q sao cho PQ cắt ON tại U, trên tia đối của tia QU lấy điểm S, sao cho PQ = US, dựng hình chữ nhật OUST
+ Khi đó diện tích hình chữ nhật LPST chính là diện tích còn lại của mảnh đất sau khi đào ao và bằng 2304 m2
+ Độ dài đoạn LT là:
2304 : 32 = 72 (m)
Độ dài đoạn PQ bằng độ dài đoạn US và bằng:
(72 - 32) : 2 = 20 (m)
Diện tích của ao cá là:
20 x 20 = 400 (m2)
Kết luận: diện tích của cái ao là: 400 m2