Cho hình vuông ABCD. M là điểm nằm giữa D và C. tia phân giác của góc DAM cắt CD tại N. kẻ NH vuông góc AM, NH cắt BC tại I.
a) tam giác ABI = tam giác AHI.
b) tính góc NAI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{x}{x-1}+\frac{1}{x+1}+\frac{2}{x^2-1}\)
\(=\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{2}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+x+x-1+2}{\left(x-1\right)\left(x+1\right)}=\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{x+1}{x-1}\)
\(\left(x-2014\right)^2+\left(x-2014\right)\left(x+2014\right)=0\)
\(\Leftrightarrow\left(x-2014\right)\left[\left(x-2014\right)+\left(x+2014\right)\right]=0\)
\(\Leftrightarrow2x\left(x-2014\right)=0\Leftrightarrow x=0;2014\)
\(bdt< =>x\left(x+y\right)\le\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{y}< =>x^2-xy+y^2\ge xy\)
\(< =>\left(x-y\right)^2\ge0\)(dpcm)
mình đánh nhầm nha mn
=\(\frac{19}{49}\)chứ ko phải là 4949 đâu nhá
thông cảm nhé mn
a) (x + y + z)3 - x3 - y3 - z3
= (x + y + z)3 - z3 - (x3 + y3)
= (x + y + z - z)[(x + y + z)2 + (x + y + z).z + z2) - (x + y)(x2 - xy + y2)
= (x + y)(x2 + y2 + z2 + 2xy + 2yz + 2zx + 2xz + 2yz + z2 + z2) - (x + y)(x2 - xy + y2)
= (x + y)(x2 + y2 + 3z2 + 2xy + 4yz + 4zx) - (x + y)(x2 - xy + y2)
= (x + y)(3z2 + 3xy + 5yz + 4zx)
b) Sửa đề x4 + 2010x2 + 2009x + 2010
= (x4 + x2 + 1) + (2009x2 + 2009x + 2009)
= (x4 + 2x2 + 1 - x2) + 2009(x2 + x + 1)
= [(x2 + 1)2 - x2] + 2009(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 1) + 2009(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 2010)