Cho ( x + y + z )2 = 3 ( xy + yz + xz ) . Chứng minh x=y=z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - 5x = 0
<=> x( x - 5 ) = 0
<=> x = 0 hoặc x - 5 = 0
<=> x = 0 hoặc x = 5
x2 - 7x + 10 = 0
<=> x2 - 2x - 5x + 10 = 0
<=> x( x - 2 ) - 5( x - 2 ) = 0
<=> ( x - 2 )( x - 5 ) = 0
<=> x - 2 = 0 hoặc x - 5 = 0
<=> x = 2 hoặc x = 5
\(x^2-5x=0\Leftrightarrow x\left(x-5\right)=0\Leftrightarrow x=0;5\)
\(x^2-7x+10=0\Leftrightarrow x^2-2x-5x+10=0\)
\(\Leftrightarrow x\left(x-2\right)-5\left(x-2\right)=0\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\Leftrightarrow x=5;2\)
5x( x - y ) + 12x - 12y
= 5x( x - y ) + 12( x - y )
= ( x - y )( 5x + 12 )
x2 + 2xy - 9 + y2
= ( x2 + 2xy + y2 ) - 9
= ( x + y )2 - 32
= ( x + y - 3 )( x + y + 3 )
\(5x\left(x-y\right)+12x-12y\)
\(=5x\left(x-y\right)+12\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+12\right)\)
\(x^2+2xy-9+y^2\)
\(=\left(x^2+2xy+y^2\right)-9\)
\(=\left(x+y\right)^2-3^2\)
\(=\left(x+y-3\right)\left(x+y+3\right)\)
\(B=\left(\frac{x}{x+1}+\frac{x-1}{x}\right)\div\left(\frac{x}{x+1}-\frac{x-1}{x}\right)\)
ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)
\(=\left(\frac{x^2}{x\left(x+1\right)}+\frac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}\right)\div\left(\frac{x^2}{x\left(x+1\right)}-\frac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}\right)\)
\(=\left(\frac{x^2+x^2-1}{x\left(x+1\right)}\right)\div\left(\frac{x^2-x^2+1}{x\left(x+1\right)}\right)\)
\(=\frac{2x^2-1}{x\left(x+1\right)}\times\frac{x\left(x+1\right)}{1}=2x^2-1\)
Để B = 1 => 2x2 - 1 = 1
=> 2x2 - 1 - 1 = 0
=> 2x2 - 2 = 0
=> 2( x2 - 1 ) = 0
=> 2( x - 1 )( x + 1 ) = 0
=> x - 1 = 0 hoặc x + 1 = 0
=> x = 1 ( tm ) hoặc x = -1 ( ktm )
Vậy x = 1 thì B = 1
a, \(3x\left(2x-3\right)-6x\left(1+x\right)=5\)
\(\Leftrightarrow6x^2-9x-6x-6x^2=5\)
\(\Leftrightarrow-15x=5\Leftrightarrow x=-\frac{1}{3}\)
b, \(\left(x+1\right)^3-\left(x-2\right)^3=x^3+1\)
\(\Leftrightarrow\left(x+1\right)^3-\left(x-2\right)^3=x^3+1\)
\(\Leftrightarrow\left(x+1\right)^3-\left(x-2\right)^3-x^3-1=0\)
\(\Leftrightarrow x^3+3x^2+3x+1-\left(x^3-6x^2+12x-12\right)-x^3-1=0\)
\(\Leftrightarrow-x^3+9x^2-9x+12=0\)
a,\(3x\left(2x-3\right)-6x\left(1+x\right)=5\)
\(\Leftrightarrow6x^2-9x-6x-6x^2=5\)
\(\Leftrightarrow-15x=5\)
\(\Leftrightarrow x=-\frac{1}{3}\)
ta có
\(\left(x+y+z\right)^2=3\left(xy+yz+xz\right)\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=3\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+y^2+z^2-\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
\(\Leftrightarrow x=y=z\)