Cho đường tròn (O,R) và một điểm A cố định thuộc đường tròn. Trên tiếp tuyến với đường tròn (O) tại A , lấy một điểm k cố định. Một đường thẳng d thay đổi đi qua K và không đi qua tâm O, cắt (O) tại hai điểm B và C (B nằm giữa K và C). Gọi M là trung điểm của BC. 1)CMR 4 điểm A,O,M,K cùng nằm trên một đường tròn ,2)CMR KA bình phương =KB.KC=KO bình phương - R bình phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo Bun-hia-cop-xki:
\(M=\left[\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right]\left(a+b+c\right)\ge\left(\Sigma_{cyc}\frac{a}{ab+a+1}\right)^2\)
Với \(abc=1\)thì ta luôn có: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\)(Cái này nhiều rồi nên mình khỏi ghi lại)
\(\Rightarrow M\ge1\)
\(\Rightarrow\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\ge\frac{1}{a+b+c}\)
Đẳng thức xảy ra khi \(a=b=c=1\)
Cho hình vuông biết diện tích là 81cm vuông.Tính độ dài một cạnh.
Chời ơi bài này dễ thế mà đứa học sinh lớp 1 còn biết làm?
EM MÌNH LỚP 1 NHẮM MẮT CŨNG LÀM ĐƯỢC NỮA
Áp dụng BĐT AM-GM ta được
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge2\sqrt{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\left(a+b+c\right)}\)
Như vậy, để kết thúc chứng minh ta cần chỉ ra rằng
\(\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\left(a+b+c\right)\ge3\left(a^2+b^2+c^2\right)\)
Thật vậy, áp dụng BĐT Cauchy-Schwartz ta có:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)
Công việc cuối cần chứng minh \(\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
Hay \(\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)\ge2\left(a^2b+b^2c+c^2a\right)\)
Đây là một đánh giá đúng theo BĐT AM-GM do đó BĐT ban đầu được chứng minh