Đề bài toán: 1,9999... = 2 đúng hay sai?
Giải theo cách lớp 7 nha !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta nhận thấy mẫu của biểu thức trên là:
x26+x24+x22+...+x2+1=(x26+x22+...+x2)+(x24+x20+...+x4+1)
=x2(x24+x20+...+x16+...+1)+(x24+x20+...+x4+1)
=(x24+x20+...+1)(x2+1)
Như vậy\(\frac{x^{24}+x^{20}+x^{16}+...+1}{\left(x^{24}+x^{20}+...+1\right)\left(x^2+1\right)}\)=\(\frac{1}{x^2+1}\)
Ta có: P=-x2-8x+5
=>P=-x2-8x-16+16+5
=>P=-(x2+8x+16)+21
mà x2+8x+16=(x+4)2 (Theo công thức)
nên P=-(x+4)2+21
Vậy P đạt giá trị lớn nhất là 21 khi và chỉ khi x=-4.
Trước hết x = 1,9999... là vô hạn số 9. Toán học định nghĩa x chính là giới hạn của dãy số x_n với x_n = 1,99... 9 (có n số 9).
Khi đó x_n = 2 - (0,1)^n. Đặt x = 1,9999... , ta có 10 × x = 19, 9999...
Theo ngôn ngữ giới hạn: 10x = lim (10 x_{n+1}) = lim (20- (0,1)^n)
10x - x = lim (10 x_{n+1} - x_n) = lim [20 - (0,1)^n - 2 + (0,1)^n] = 18. Suy ra: 9 × x = 18. Vậy x = 2, hay 1,9999... = 2.
sao kì v bn này mới đăng 7 phút trc mà bn kia tl lúc 26 phút trc có sự kì nhẹ