Cho pt: \(x^2+6x+6a-a^2=0\)
a) Tìm a để pt có nghiệm
b) Gỉa sử x1; x2 là 2 nghiệm của pt. Tìm a để 2 nghiệm của pt thỏa mãn: \(\left(x_1\right)^3-8x_1=x_2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2\left(m-1\right)x+m^2-3=0\)
có: \(\Delta'=\left(m-1\right)^2-\left(m^2-3\right)=-2m+4\)
Phương trình có hai nghiệm <=> \(-2m+4\ge0\Leftrightarrow m\le2\)(@@)
Vì \(x_1\)là nghiệm của phương trình nên ta có: \(x_1^2-2\left(m-1\right)x_1+m^2-3=0\)(1)
mà \(\left(x_1\right)^2+4x_1+2x_2-2mx_1=1\)(2)
Lấy (1) - (2) ta có: \(-2x_1-2x_2+m^2-3=-1\)
<=> \(-2\left(x_1+x_2\right)+m^2-2=0\)
<=> - \(4\left(m-1\right)+m^2-2=0\)
<=> \(\orbr{\begin{cases}m=2+2\sqrt{2}\left(kotm\right)\\m=2-2\sqrt{2}\left(tm@@\right)\end{cases}}\)
Vậy \(m=2-\sqrt{2}\)
\(\Delta'=\left(m-1\right)^2-m^2+3=-2m+4\ge0\Leftrightarrow m\le2\)
Định lý Vi-et \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-3\end{cases}}\)
Vì x1 là nghiệm của phương trình nên \(x_1^2-2\left(m-1\right)x_1+m^2-3=0\Leftrightarrow x_1^2-2mx_1=-2x_1-m^2+3\left(1\right)\)
Theo đề \(x_1^2+4x_1+2x_2-2mx_1=1\Leftrightarrow x_1^2-2mx_1+4x_1+2x_2=1\left(2\right)\)
Thay (1) vào (2) ta có \(-2x_2-m^2+3+4x_1+2x_2=1\Leftrightarrow2\left(x_1+x_2\right)-m^2+2=0\Leftrightarrow4\left(m-1\right)-m^2+2=0\)
\(\Leftrightarrow m^2-4m+2=0\)
\(\Leftrightarrow m=2\pm\sqrt{2}\)
So với điều kiện đề bài ta có \(m=2-\sqrt{2}\)
\(\hept{\begin{cases}\frac{1}{x-2}+\frac{5}{2y-1}=3\\\frac{3}{x-2}-\frac{1}{2y-1}=1\end{cases}\left(x\ne2,y\ne\frac{1}{2}\right)}\)
Dật \(u=\frac{1}{x-2},v=\frac{1}{2y-1}\)ta có
\(\hept{\begin{cases}u+5v=3\\3u-v=1\end{cases}\Leftrightarrow}\hept{\begin{cases}u+5v=3\\15u-5v=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}16u=8\\u+5v=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}u=\frac{1}{2}\\5v=\frac{5}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}u=\frac{1}{2}\\v=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x-2}=\frac{1}{2}\\\frac{1}{2y-1}=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2=2\\2y-1=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\left(TM\right)\\y=\frac{3}{2}\left(TM\right)\end{cases}}\)
Vậy hệ phương trình có nghiệm \(\left(x,y\right)=\left(4,\frac{3}{2}\right)\)
\(x^2-\left(m+5\right)x-m+6=0\)
có: \(\Delta=\left(m+5\right)^2-4\left(-m+6\right)=m^2+14m+1\)
Điều kiện để phương trình có hai nghiệm là: \(\Delta\ge0\Leftrightarrow m^2+14m+1\ge0\left(@@\right)\)
Áp dụng định lí vi et: \(\hept{\begin{cases}x_1+x_2=m+5\\x_1x_2=-m+6\end{cases}}\)
mà \(2x_1+3x_2=13\Rightarrow2\left(m+5\right)+x_2=13\)
<=> \(x_2=3-2m\)
=> \(x_1=m+5-x_2=m+5-\left(3-2m\right)=3m+2\)
Vì \(x_1x_2=-m+6\) nên ta có phương trình:
\(\left(3-2m\right)\left(3m+2\right)=-m+6\)
<=> \(-6m^2+6m=0\)
<=> \(\orbr{\begin{cases}m=0\\m=1\end{cases}}\)thay vào thỏa mãn (@@)
Vậy m = 0 hoặc m = 1.
Lời giải:
a)
Xét tam giác MCAMCA và MBCMBC có:
MˆM^ chung
MCAˆ=MBCˆMCA^=MBC^ (góc tạo bởi dây cung và tiếp tuyền thì bằng góc nội tiếp chắn cung đó, cụ thể ở đây là cung ACAC)
⇒△MCA∼△MBC(g.g)⇒△MCA∼△MBC(g.g)
⇒MCMB=MAMC⇒MC2=MA.MB⇒MCMB=MAMC⇒MC2=MA.MB (đpcm)
b)
Theo tính chất tiếp tuyến cắt nhau MC=MDMC=MD
Hơn nữa OC=OD=ROC=OD=R
Do đó MOMO là đường trung trực của CDCD
⇒MO⊥CD⇒MO⊥CD tại HH
⇒MHCˆ=900⇒MHC^=900
Vì MCMC là tiếp tuyến (O)(O) nên MC⊥OC⇒MCOˆ=900MC⊥OC⇒MCO^=900
Xét tam giác MCOMCO và MHCMHC có:
MˆM^ chung
MCOˆ=MHCˆ(=900)MCO^=MHC^(=900)
⇒△MCO∼△MHC(g.g)⇒MCMH=MOMC⇒MC2=MH.MO⇒△MCO∼△MHC(g.g)⇒MCMH=MOMC⇒MC2=MH.MO
Kết hợp với kết quả phần a suy ra MH.MO=MA.MBMH.MO=MA.MB
⇒AHOB⇒AHOB là tứ giác nội tiếp.
A B c D s O M
a) có góc BAM = góc MNB = 90 độ
=> tgAMNB nội tiếp ( vì tổng 2 góc đối bằng 180 độ)
b)cóa tia BM cắt (O) tại D => góc MDC = 90 độ( góc nội tiếp chắn nửa dt)
=> ABCD là tgnt (vì góc BAC và góc BDC là 2 góc nội tiếp bằng nhau cùng chắn cung BC)
c) tg ABCD nt => góc ADB= góc ACB
và tg SMCD nt dt (O) =>góc SCM= góc SDM
mà góc SDM= góc ADB
=> góc SCM= góc ACB
=> AC là pg góc SCB
d ) tg BAM vuông cân tại A => góc AMB= 45 độ => góc DMC= 45 độ ( 2 góc đối dỉnh)
=> góc MDO=góc DMC= góc ODC= góc DCO= 45 độ
=> góc DOC = 90 độ
cóa OD= OC=OM=AM=AB= 2 cm
rồi sd công thức là ra nhé !!!:)))
a) Phương trình đã cho có \(\Delta'=36-6a+a^2=a^2-6a+9+27=\left(a-3\right)^3+27>0\) nên có 2 nghiệm phân biệt với mọi a
b) Theo hệ thức Vi-et ta có \(x_1+x_2=6\Leftrightarrow x_2=6-x_1\)
Ta có \(x_2=x_1^3-8x_1\Leftrightarrow x_1^3-8x_1=6-x_1\Leftrightarrow x_1^3-7x_1-6=0\)
\(\Leftrightarrow x_1^3-x_1-6x_1-6=0\Leftrightarrow x_1\left(x_1-1\right)\left(x_1+1\right)-6\left(x_1+1\right)=0\)
\(\Leftrightarrow\left(x_1+1\right)\left(x_1^2-x_1-6\right)=0\Leftrightarrow\left(x_1+1\right)\left(x_1^2+2x_1-3x_1-6\right)=0\)
\(\Leftrightarrow\left(x_1+1\right)\left[x_1\left(x_1+2\right)-3\left(x_1+2\right)\right]=0\Leftrightarrow\left(x_1+1\right)\left(x_1+2\right)\left(x_1-3\right)=0\)
\(\Leftrightarrow x_1\in\left\{-1;-2;3\right\}\)
*) \(x_1=-1\Leftrightarrow\left(-1\right)^2-6\left(-1\right)+6a-a^2=0\Leftrightarrow a^2-6a-7=0\Leftrightarrow\orbr{\begin{cases}a=-1\\a=7\end{cases}}\)
*) \(x_1=-2\Leftrightarrow\left(-2\right)^2-6\left(-2\right)+6a-a^2=0\Leftrightarrow a^2-6a-16=0\Leftrightarrow\orbr{\begin{cases}a=-2\\a=8\end{cases}}\)
*) \(x_1=3\Leftrightarrow3^2-6\cdot3+6a-a^2=0\Leftrightarrow a^2-6a+9=0\Leftrightarrow a=3\)
Vậy \(a=\left\{-1;-2;3;7;8\right\}\)