Cho hình chữ nhật ABCD có diện tích 120 cm2. Trên BC lấy điểm M sao cho diện tích tam giác ABM bằng 40 cm2, trên CD lấy điểm N sao cho diện tích tam giác ADN bằng 20 cm2. Tính diện tích tam giác AMN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}\Rightarrow x\ne0;x\ne-2\left(1\right)}\)
Ta có P = \(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^2+2x}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\frac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2+2x^2-50+50+5x}{2x\left(x+5\right)}=\frac{x^3+4x^2+5x}{2x\left(x+5\right)}=\frac{x\left(x^2+4x+5\right)}{2x\left(x+5\right)}\)
\(=\frac{x^2+4x+5}{2\left(x+5\right)}\)
c) P = 1
<=> \(\frac{x^2+4x+5}{2\left(x+5\right)}=1\Rightarrow x^2+4x+5=2\left(x+5\right)\)
=> x2 + 4x + 5 - 2x - 10 = 0
=> x2 + 2x - 5 = 0
=> x2 + 2x + 1 - 6 = 0
=> (x + 1)2 = 6
=> \(\orbr{\begin{cases}x+1=\sqrt{6}\\x+1=-\sqrt{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{6}-1\\x=-\sqrt{6}-1\end{cases}}\)(tm (1))
d) P = -1/2
<=> \(\frac{x^2+4x+5}{2\left(x+5\right)}=-\frac{1}{2}\)
=> 2(x2 + 4x + 5) = -2(x + 5)
=> 2x2 + 8x + 10 = -2x - 10
=> 2x2 + 8x + 10 + 2x + 10 = 0
=> 2x2 + 10x + 20 = 0
=> 2(x2 + 5x + 10) = 0
=> x2 + 5x + 10 = 0
=> \(x^2+2.\frac{5}{2}x+\frac{25}{4}+\frac{15}{4}=0\)
=> \(\left(x+\frac{5}{2}\right)^2+\frac{15}{4}=0\)
=> \(x\in\varnothing\left(\text{Vì }\left(x+\frac{5}{2}\right)^2+\frac{15}{4}>0\forall x\right)\)
Vậy không tồn tại x để P = -1/2
\(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50+5x}{2x\left(x+5\right)}\)
a) ĐK : x ≠ 0 ; x ≠ -5
b) \(P=\frac{x\left(x+2\right)}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^2\left(x+2\right)}{2x\left(x+5\right)}+\frac{2\left(x-5\right)\left(x+5\right)}{2x\left(x+5\right)}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2}{2x\left(x+5\right)}+\frac{2\left(x^2-25\right)}{2x\left(x+5\right)}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2+2x^2-50+50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+4x^2+5x}{2x\left(x+5\right)}=\frac{x\left(x^2+4x+5\right)}{2x\left(x+5\right)}\)
\(=\frac{x^2+4x+5}{2x+10}\)
c) Để P = 1
thì \(\frac{x^2+4x+5}{2x+10}=1\)
=> x2 + 4x + 5 = 2x + 10
=> x2 + 4x + 5 - 2x - 10 = 0
=> x2 - 2x - 5 = 0
=> ( x2 - 2x + 1 ) - 6 = 0
=> ( x - 1 )2 - ( √6 )2 = 0
=> ( x - 1 - √6 )( x - 1 + √6 ) = 0
=> x = 1 + √6 hoặc x = 1 - √6
Cả hai giá trị đều thỏa x ≠ 0 ; x ≠ -5
Vậy x = 1 + √6 hoặc x = 1 - √6
d) Để P = -1/2
thì \(\frac{x^2+4x+5}{2x+10}=\frac{-1}{2}\)
=> 2( x2 + 4x + 5 ) = -2x - 10
=> 2x2 + 8x + 10 + 2x + 10 = 0
=> 2x2 + 10x + 20 = 0
=> 2( x2 + 5x + 10 ) = 0
=> x2 + 5x + 10 = 0 (*)
Ta có : x2 + 5x + 10 = ( x2 + 5x + 25/4 ) + 15/4 = ( x + 5/2 )2 + 15/4 ≥ 15/4 > 0 ∀ x
tức (*) không xảy ra
Vậy không có giá trị của x để P = -1/2
\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n^2-1\right)\left(n-1\right)+\left(n^2-1\right)\)
\(=\left(n^2-1\right)\left(n-1+1\right)\)
\(=n\cdot\left(n-1\right)\left(n+1\right)\)
Vì n; n-1; n+1 là 3 số nguyên liên tiếp
=> \(n\left(n-1\right)\left(n+1\right)⋮3\) (1)
Vì n; n-1 là 2 số nguyên liên tiếp
\(\Rightarrow n\left(n-1\right)⋮2\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮2\) (2)
Từ (1) và (2)
=>\(n\left(n-1\right)\left(n+1\right)⋮6\)
Hay \(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)⋮6\)
Vậy....
\(\left(a^2+a\right)^2+3\left(a^2+a\right)-10\)
\(=\left(a^2+a+5\right)\left(a^2+a-2\right)\)
\(=\left(a^2+a+5\right)\left(a-1\right)\left(a+2\right)\)