cho tam giác ABC nhọn nội tiếp (O) kẻ phân giác trong của góc B và C cắt (O) tại thứ tự D,E và cắt nhau tại F .Gọi I, K theo thứ tự là giao điểm của DE với AB,AC
a) chứng minh tam giác EBF và DAF cân
b)DKFC nội tiếp và FK song song AB
c) AIFK là hình j vì sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét: \(\Delta'=3^2-\left(6a-a^2\right)=a^2-6a+9=\left(a-3\right)^2\ge0\) với mọi a
=> phương trình luôn có hai nghiệm:
Theo định lí viet: \(\hept{\begin{cases}x_1+x_2=-6\left(1\right)\\x_1x_2=6a-a^2\left(2\right)\end{cases}}\)
Ta có: \(x_2=x_1^3-8x_1\)thế vào (1)
<=> \(x_1^3-8x_1+x_1=-6\)
<=> \(x_1^3-7x_1+6=0\)
<=> x1 = 1 hoặc x1 = 2 hoặc x1 =-3
Với \(x_1=1\)ta có: \(x_2=-7\) thế vào (2): \(-7=6a-a^2\Leftrightarrow\orbr{\begin{cases}a=7\\a=-1\end{cases}}\)
Với \(x_1=2\)ta có: \(x_2=-8\) thế vào (2): \(-16=6a-a^2\Leftrightarrow\orbr{\begin{cases}a=8\\a=-2\end{cases}}\)
Với \(x_1=-3\)ta có: \(x_2=-3\) thế vào (2): \(9=6a-a^2\Leftrightarrow a=3\)
Vậy có 5 giá trị a thỏa mãn là:...
Đặt: \(\sqrt[3]{6x-9}=t\)
<=> \(t^3=6x-9\)
Ta có hệ phương trình: \(\hept{\begin{cases}x^3=6t-9\\t^3=6x-9\end{cases}}\)
trừ vế theo vế => \(\left(x^3-t^3\right)+6\left(x-t\right)=0\)
<=> \(\left(x-t\right)\left(x^2+t^2+xt+6\right)=0\)
<=> x = t
khi đó: \(x^3=6x-9\)<=> x = - 3
Kết luận: x = - 3.
\(x^4+y^4=162\)
<=> \(\left(x^2+y^2\right)^2-2x^2y^2=162\)
<=> \(\left(9+xy\right)^2-2\left(xy\right)^2=162\)
<=> \(-\left(xy\right)^2+18xy-81=0\)
<=> \(xy=9\)
khi đó: \(x^2+y^2=9+xy=9+9=18\)
<=> \(\left(x+y\right)^2-2xy=18\)
<=> \(\left(x+y\right)^2=36\)
<=> x + y = 6 hoặc x + y = -6
+) TH1: x + y = 6 và xy = 9
x, y là nghiệm của hệ: \(X^2-6X+9=0\Leftrightarrow X=3\)
khi đó: x = y = 3
+) TH2: x + y = -6 và xy = 9
x, y là nghiệm của hệ: \(X^2+6X+9=0\Leftrightarrow X=-3\)
khi đó: x = y = - 3
Vậy hệ có 2 ngiệm: ( 3; 3) và ( -3; -3)
\(PT\Leftrightarrow6\left(x+\sqrt{6x^2+6}\right)=-5x^2-2\sqrt{5}x-1\)
\(\Leftrightarrow6\left(x+\sqrt{6x^2+6}\right)=-\left(\sqrt{5}x+1\right)^2\)
\(\Rightarrow x+\sqrt{6x^2+6}\le0\)