Cho tam giác ABC , D là 1 điểm trên cạnh BC , Qua C kẻ đưởng thẳng song song với AC cắt AB ở E . Qua D kẻ đường thẳng song song với AB cắt AC ở F có EF // BC . Chứng minh D là trung điểm cạnh BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x+1}{99}+\frac{x+3}{97}+\frac{x+5}{95}=\frac{x+7}{93}+\frac{x+9}{91}+\frac{x+11}{89}\)
\(\Leftrightarrow\frac{x+1}{99}+1+\frac{x+3}{97}+1+\frac{x+5}{95}+1=\frac{x+7}{93}+1+\frac{x+9}{91}+1+\frac{x+11}{89}+1\)
\(\Leftrightarrow\left(\frac{x+1}{99}+1\right)+\left(\frac{x+3}{97}+1\right)+\left(\frac{x+5}{95}+1\right)=\left(\frac{x+7}{93}+1\right)+\left(\frac{x+9}{91}+1\right)+\left(\frac{x+11}{89}+1\right)\)
\(\Leftrightarrow\frac{x+1+99}{99}+\frac{x+3+97}{97}+\frac{x+5+95}{95}=\frac{x+7+93}{93}+\frac{x+9+91}{91}+\frac{x+11+89}{89}\)
\(\Leftrightarrow\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}=\frac{x+100}{93}+\frac{x+100}{91}+\frac{x+100}{89}\)
\(\Leftrightarrow\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}-\frac{x+100}{93}-\frac{x+100}{91}-\frac{x+100}{89}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{93}-\frac{1}{91}-\frac{1}{98}\right)=0\)
\(\Leftrightarrow x+100=0\)
\(\Leftrightarrow x=-100\)
\(\frac{x+1}{99}+\frac{x+3}{97}+\frac{x+5}{95}=\frac{x+7}{93}+\frac{x+9}{91}+\frac{x+11}{89}\)
\(\Leftrightarrow\frac{x+1}{99}+1+\frac{x+3}{97}+1+\frac{x+5}{95}+1=\frac{x+7}{93}+1+\frac{x+9}{91}+1+\frac{x+11}{89}+1\)
\(\Leftrightarrow\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}=\frac{x+100}{93}+\frac{x+100}{91}+\frac{x+100}{89}\)
\(\Leftrightarrow x+100=0\)
\(\Leftrightarrow x=-100\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
5(2x-3)-4(5x-7)=19-2(x+11)
<=> 10x-15-20x+28=19-2x-22
<=> 10x-20x+2x=19-22+15-28
<=> -8x=-16
<=> x=2
\(5\left(2x-3\right)-4\left(5x-7\right)=19-2\left(x+11\right)\)
\(\Leftrightarrow10x-15-20x+28=19-2x-22\)
\(\Leftrightarrow10x-20x+2x=19-22+15-28\)
\(\Leftrightarrow-8x=-16\)
\(\Leftrightarrow x=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(A^2=\frac{9x^2+4y^2-12xy}{9x^2+4y^2+12xy}=\frac{20xy-12xy}{20xy+12xy}=\frac{8xy}{32xy}=\frac{1}{4}\)
Vì \(2y< 3x< 0\Rightarrow3x-2y>0,3x+2y< 0\Rightarrow A< 0\)
Vậy A= \(\frac{-1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy+2y^2=0\)\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
Vì \(x+y\ne0\Rightarrow x=2y\)
=> \(A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)