Giải PT: \(\hept{\begin{cases}4x^2+2xy=1\\\sqrt{x-y+1}+1=4\left(x-y\right)^2+\sqrt{3\left(x-y\right)}\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc riêng của ca nô là x ( km/h , x > 3 )
Vận tốc ca nô khi xuôi dòng = x + 3
Vận tốc ca nô khi ngược dòng = x - 3
=> Thời gian ca nô đi khi xuôi dòng = 40/x+3
Thời gian ca nô đi khi ngược dòng = 40/x-3
Thời gian xuôi dòng ít hơn thời gian ngược dòng 20 phút = 1/3 giờ
=> Ta có phương trình : \(\frac{40}{x-3}-\frac{40}{x+3}=\frac{1}{3}\)
<=> \(\frac{3\cdot40\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)}-\frac{3\cdot40\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)}=\frac{\left(x-3\right)\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)}\)
<=> \(120x+360-120x+360=\left(x-3\right)\left(x+3\right)\)
<=> \(720=\left(x-3\right)\left(x+3\right)\)
<=> \(720=x^2-9\)
<=> \(x^2=729\)
<=> \(x=\pm\sqrt{729}=\pm27\)
Vì x > 0 => x = 27
Vậy vận tốc riêng của ca nô = 27km/h
\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge1\)
<=> \(\left(1+b\right)^2\left(1+c\right)^2+\left(1+a\right)^2\left(1+b\right)^2+\left(1+a\right)\left(1+c\right)^2\)
\(+2\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2\)
<=> \(a^2+b^2+c^2\ge3\)đúng vì \(a^2+b^2+c^2\ge3\sqrt[3]{\left(abc\right)^2}=3\)
Dấu "=" xảy ra <=> a = b = c = 1