Tìm giá trị nhỏ nhất:
\(x+2+\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x+2}{2005}+\frac{x+3}{2004}+\frac{x+4}{2003}+3=0\)
\(\Leftrightarrow\left(\frac{x+2}{2005}+1\right)+\left(\frac{x+3}{2004}+1\right)+\left(\frac{x+4}{2003}+1\right)=0\)
\(\Leftrightarrow\frac{x+2007}{2005}+\frac{x+2007}{2004}+\frac{x+2007}{2003}=0\)
\(\Leftrightarrow\left(x+2007\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)=0\)
Mà \(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}>0\) \(\Rightarrow x+2007=0\Rightarrow x=-2007\)
\(\left(2x^2-x+2\right)\left(2x^2-3x-2\right)-8x^2=0\)
\(\Leftrightarrow4x^4-6x^3-4x^2-2x^3+3x^2+2x+4x^2-6x-4-8x^2=0\)
\(\Leftrightarrow4x^4-8x^3-5x^2-4x-4=0\)