Cho ba số a,b,c thỏa mãn : a^2 + b^2 + c^2 < 18 .Tìm giá trị nhỏ nhất P = 3ab + bc + ca
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi cd là a
cr là b
=> a.b =600 (m2)
=> a=b+10
Thay a=b+10 vào bt a.b=600 (m2)
=>b.(b+10)=600
TH 1 : b(b+10)= 20 . 30 ( 2 số cách nhau 10 đơn vị)
=> b = 20
thay b=20 m vào bt
a.b=600
=>a.20=600
=> a= 600:20
=>a=30(m)
chu vi khu vườn đó là :
(20+30)x2=100(m)
Đáp số : 100m
TH2 :
b(b+10)=-30.-20 ( 2 số cách nhau 10 đơn vị)
=> b =-30
=> Vô lí vì cạnh không bao giờ <0
Đây là cách trình bày tiểu học nha ! Trình bày kiểu khác thì e ko bt nhưng đi thi ghi ntn là đc điểm rồi ạ !
\(5x^2-6x-2=0\)
\(\Delta'=\left(-6\right)^2-4\cdot5\cdot\left(-2\right)=76>0\)
=> Phương trình có 2 nghiệm
Theo Viet, ta có: \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=\frac{6}{5}\\x_1x_2=\frac{c}{a}=\frac{-2}{5}\end{cases}}\)
Vậy: ...
\(A=\frac{2}{5+\sqrt{7}}+\frac{\sqrt{28}}{2}-2\)
\(A=\frac{2.\left(5-\sqrt{7}\right)}{25-7}+\frac{2\sqrt{7}}{2}-2\)
\(A=\frac{2.\left(5-\sqrt{7}\right)}{18}+\sqrt{7}-2\)
\(A=\frac{5-\sqrt{7}}{9}+\sqrt{7}-2\)
\(A=\frac{5-\sqrt{7}+9\sqrt{7}-18}{9}\)
\(A=\frac{-13+8\sqrt{7}}{9}\)
Vậy \(A=\frac{-13+8\sqrt{7}}{9}\)
\(A=\frac{2}{5+\sqrt{7}}+\frac{\sqrt{28}}{2}-2\)
\(=\frac{2\left(5-\sqrt{7}\right)}{25-7}+\frac{2\sqrt{7}}{2}-2\)
\(=\frac{2\left(5-\sqrt{7}\right)}{18}+\sqrt{7}-2\)
\(=\frac{2\left(5-\sqrt{7}\right)}{2.9}+\sqrt{7}-2=\frac{5-\sqrt{7}}{9}+\sqrt{7}-2\)
Hoành độ giao điểm là nghiệm của phương trình:
x^2 = 2x - n + 3
<=> x^2 - 2x + n - 3 = 0 (1)
có: \(\Delta'=1^2-\left(n-3\right)=4-n\)
(P) cắt (d) <=> (1) có nghiệm <=> \(\Delta'\ge0\Leftrightarrow n\le4\)(@)
Áp dụng định lí viet ta có: x1 . x2 = n - 2 (2) ; x1 + x2 = 2(3)
Theo bài ra ta có: \(x_1^2-2x_2+x_1x_2=16\)
<=> \(2x_1-n+3-2x_2+x_1x_2=16\)
<=> \(2x_1-n+3-2x_2+n-3=16\)
<=> \(x_1-x_2=8\)(4)
Từ (3); (4) => x1 = 5; x2 = -3
Thế vào (2) ta có: 5.(-3) = n - 3 <=> n = -12
Tìm điểm rơi: ( a; b ; c ) = ( -3; 3; 0 ) hoặc ( 3; -3 ; 0 )
Xét: 2P + 3.18 \(\ge\) 2( 3ab + bc + ca ) + 3(a^2 + b^2 + c^2) = ( a+ b + c)^2 + 2(a+b)^2 + 2c^2\(\ge\)0 đúng
( nháp = k ( a+ b + c)^2 + m ( a + b)^2 + n c^2
k + m = 3
n +k = 3
2k + 2m = 6 <=> k = 1; m = 2; n = 2
2k = 2 )
Do đó: 2P \(\ge\)-3.18
=> P \(\ge\)-27
Dấu "=" xảy ra <=> a = - b ; c = 0 ; a^2 + b^2 + c^2 = 18 <=> a = 3; b = - 3; c = 0 hoặc a = -3; b = 3 và c = 0