Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


`n^2+n+4` chia hết cho n + 1
`=>(n^2+n) +4` chia hết cho n + 1
`=> n(n+1)+4` chia hết cho n + 1
Mà: `n(n+1)` chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 ∈ Ư(4) = {1; -1; 2; -2; 4; -4}
=> n ∈ {0; -2; 1; -3; 3; -5}

\(\left(27+11\right)\cdot\left(512-\left[14\cdot\left(64-4^2\right):2\right]\right)\\ =33\cdot\left[512-\left[14\cdot\left(64-16\right):2\right]\right]\\ =33\cdot\left(512-14\cdot48:2\right)\\ =33\cdot\left(512-14\cdot24\right)\\ =33\cdot\left(512-336\right)\\ =33\cdot176\\ =5808\)

\(C=\dfrac{9}{1\cdot2}+\dfrac{9}{2\cdot3}+...+\dfrac{9}{44\cdot45}\)
\(=9\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{44\cdot45}\right)\)
\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{44}-\dfrac{1}{45}\right)\)
\(=9\left(1-\dfrac{1}{45}\right)=9\cdot\dfrac{44}{45}=\dfrac{44}{5}\)

Gọi số cần tìm có dạng là \(X=\overline{ab}\)
Khi viết thêm chữ số 0 vào giữa hai chữ số thì ta được số mới gấp 6 lần số cũ nên \(\overline{a0b}=6\cdot\overline{ab}\)
=>\(100a+b=6\left(10a+b\right)\)
=>100a+b=60a+6b
=>40a=5b
=>8a=b
=>b=8; a=1
Vậy: Số cần tìm là 18

a; a - b = 6 và \(\overline{4a7}\) + \(\overline{1b5}\) ⋮ 9
Để \(\overline{4a7}\) + \(\overline{1b5}\) ⋮ 9 ⇔ 4 + a + 7 + 1 + b + 5 ⋮ 9
⇒(4 + 7 + 1 + 5) + a + b ⋮ 9
⇒ 17 + a + b ⋮ 9
⇒ 8 + a + b ⋮ 9
Vì a + b ≤ 18 ⇒ 8 + a + b ≤ 26 ⇒ 8 + a + b = 9; 18 (1)
a - b = 6 ⇒ a = 6 + b Thay a = 6 + b vào (1) ta có:
8 + 6 + b + b = 9; 18 ⇒ (8 + 6) + (b + b) = 9; 18
⇒ 14 + 2b = 9; 18
Lập bảng ta có:
14 + 2b | 9 | 18 |
b | -\(\dfrac{5}{2}\) | 2 |
a = 6 + b | 8 | |
a; b \(\in\) N; 0 ≤ a; b ≤ 9 | loại |
Theo bẳng trên ta có (a; b) = (8; 2)
b; a - b = 6 và \(\overline{7a5}\) + \(\overline{8b4}\) ⋮ 9
\(\overline{7a5}\) + \(\overline{8b4}\) ⋮ 9 ⇔ 7 + a + 5 + 8 + b + 4 ⋮ 9 ⇒ (7 + 5 + 8 + 4) + a + b⋮ 9
⇒ (12 + 8 + 4) + a + b ⋮ 9 ⇒ (20 + 4) + a + b ⋮ 9 ⇒ 24 + a + b ⋮ 9
⇒ 6 + a + b ⋮ 9 vì 0 ≤ a + b ≤ 18 ⇒ 6 ≤ 6 + a + b ≤ 24
⇒ 6 + a + b = 9; 18 (1)
a - b = 6 ⇒ a = 6 + b thay a = b + 6 vào (1) ta có:
6 + 6 + b + b = 9; 18 ⇒ (6 + 6) + (b + b) = 9; 18 ⇒ 12 +2b = 9; 18
Lập bảng ta có:
12 + 2b | 9 | 18 |
b | - \(\dfrac{3}{2}\) | 3 |
a = 6 + 3 | 9 | |
0 ≤ a; b ≤ 9; a; b \(\in\) N | Loại |
Theo bảng trên ta có:
(a; b) = (9; 3)

a; a - b = 6 và \(\overline{4a7}\) + \(\overline{1b5}\) ⋮ 9
Để \(\overline{4a7}\) + \(\overline{1b5}\) ⋮ 9 ⇔ 4 + a + 7 + 1 + b + 5 ⋮ 9
⇒(4 + 7 + 1 + 5) + a + b ⋮ 9
⇒ 17 + a + b ⋮ 9
⇒ 8 + a + b ⋮ 9
Vì a + b ≤ 18 ⇒ 8 + a + b ≤ 26 ⇒ 8 + a + b = 9; 18 (1)
a - b = 6 ⇒ a = 6 + b Thay a = 6 + b vào (1) ta có:
8 + 6 + b + b = 9; 18 ⇒ (8 + 6) + (b + b) = 9; 18
⇒ 14 + 2b = 9; 18
Lập bảng ta có:
14 + 2b | 9 | 18 |
b | -\(\dfrac{5}{2}\) | 2 |
a = 6 + b | 8 | |
a; b \(\in\) N; 0 ≤ a; b ≤ 9 | loại |
Theo bẳng trên ta có (a; b) = (8; 2)
b; a - b = 6 và \(\overline{7a5}\) + \(\overline{8b4}\) ⋮ 9
\(\overline{7a5}\) + \(\overline{8b4}\) ⋮ 9 ⇔ 7 + a + 5 + 8 + b + 4 ⋮ 9 ⇒ (7 + 5 + 8 + 4) + a + b⋮ 9
⇒ (12 + 8 + 4) + a + b ⋮ 9 ⇒ (20 + 4) + a + b ⋮ 9 ⇒ 24 + a + b ⋮ 9
⇒ 6 + a + b ⋮ 9 vì 0 ≤ a + b ≤ 18 ⇒ 6 ≤ 6 + a + b ≤ 24
⇒ 6 + a + b = 9; 18 (1)
a - b = 6 ⇒ a = 6 + b thay a = b + 6 vào (1) ta có:
6 + 6 + b + b = 9; 18 ⇒ (6 + 6) + (b + b) = 9; 18 ⇒ 12 +2b = 9; 18
Lập bảng ta có:
12 + 2b | 9 | 18 |
b | - \(\dfrac{3}{2}\) | 3 |
a = 6 + 3 | 9 | |
0 ≤ a; b ≤ 9; a; b \(\in\) N | Loại |
Theo bảng trên ta có:
(a; b) = (9; 3)

2:
\(AM=\dfrac{1}{3}\cdot AB=\dfrac{1}{3}\cdot48=16\left(cm\right)\)
\(AN=\dfrac{1}{2}\cdot AD=\dfrac{1}{2}\cdot36=18\left(cm\right)\)
ΔAMN vuông tại A
=>\(S_{AMN}=\dfrac{1}{2}\times AM\times AN=\dfrac{1}{2}\times16\times18=144\left(cm^2\right)\)
BM+AM=BA
=>BM+16=48
=>BM=32(cm)
AN+ND=AD
=>ND+18=36
=>ND=18(cm)
ΔNDC vuông tại D
=>\(S_{NDC}=\dfrac{1}{2}\times ND\times DC=\dfrac{1}{2}\times18\times48=432\left(cm^2\right)\)
ΔMBC vuông tại B
=>\(S_{MBC}=\dfrac{1}{2}\times BM\times BC=\dfrac{1}{2}\times32\times36=576\left(cm^2\right)\)
ABCD là hình chữ nhật
=>\(S_{ABCD}=AB\times AD=48\times36=1728\left(cm^2\right)\)
\(S_{ABCD}=S_{AMN}+S_{NDC}+S_{MBC}+S_{MNC}\)
=>\(S_{MNC}+144+432+576=1728\)
=>\(S_{MNC}=576\left(cm^2\right)\)

11A:
a) Thay t = 1 vào A ta có:
\(A=1^4+2\cdot1^2+2022=1+2+2022=2025\)
b) Thay m = 4 và n = 2 vào B ta có:
\(B=4^2:2^2+\left(4-2\right)^2+1=16:4+2^2+1=4+4+1=9\)
11B
a) Thay a = 3 vào C ta có:
\(C=\left(2+3\right)^2+\left(3-2\right)^{2021}=5^2+1^{2021}=25+1=26\)
b) Thay a = 4 và b = 5 vào D ta có:
\(D=4\cdot5^2-\left(4+5\right)^2-1=4\cdot25-9^2-1=100-81-1=18\)
12B:
a: Độ dài cạnh là \(\dfrac{4a}{4}=a\)(m)
Diện tích hình vuông MNPQ là; \(S=a^2\)
b: Khi a=2 thì \(S=2^2=4\left(m^2\right)\)
13A:
Ngày thứ hai bán được:
5124-480=4644(lít)
Số lít dầu bán được trong ngày thứ ba là:
\(4644\cdot2=9288\left(lít\right)\)

\(\left(x-1\right)+\left(x-2\right)+...+\left(x-20\right)=150\\ x-1+x-2+...+x-20=150\\ \left(x+x+...+x\right)-\left(1+2+...+20\right)\\ 20\cdot x-\left[\left(20-1\right):1+1\right]\cdot\left(20+1\right):2=150\\ 20\cdot x-20\cdot21:2=150\\ 20\cdot x-210=150\\ 20\cdot x=150+210\\ 20\cdot x=360\\ x=360:20\\ x=18\)
câu b đề bài cho B < \(\dfrac{1}{3}\) thì cần gì chứng minh nữa em.
Đáng lẽ phải là: Cho B = \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\) +...-\(\dfrac{1}{64}\)
Chứng minh B < \(\dfrac{1}{3}\)