(12x^4+10x^3-x-3)÷(3x^2+x+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔDAC vuông tại D
=>\(\widehat{DAC}+\widehat{DCA}=90^0\)
=>\(\widehat{DAC}=90^0-20^0=70^0\)
b: Xét ΔADV vuông tại D và ΔATV vuông tại T có
AV chung
AD=AT
Do đó: ΔADV=ΔATV
=>\(\widehat{DAV}=\widehat{TAV}\)
=>AV là phân giác của góc DAC
c: Xét ΔATN vuông tại T và ΔADC vuông tại D có
AT=AD
\(\widehat{TAN}\) chung
Do đó: ΔATN=ΔADC
=>AN=AC
Xét ΔANC có \(\dfrac{AD}{AN}=\dfrac{AT}{AC}\)
nên DT//NC
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>BA=BH và DA=DH
Xét ΔBHE vuông tại H và ΔBAC vuông tại A có
BH=BA
\(\widehat{HBE}\) chung
Do đó: ΔBHE=ΔBAC
=>BE=BC
=>ΔBEC cân tại B
c: Ta có: ΔBEC cân tại B
mà BD là đường phân giác
nên BD là đường trung trực của EC
=>DE=DC
Xét ΔDEC có DE+DC>CE
=>\(EC< 2DE\)
=>\(\dfrac{EC}{DE}< 2\)
Biến cố chắc chắn là biến cố C
Biến cố ngẫu nhiên là A,B,D
Bài 14:
Gọi số quyển sách lớp 7A,7B quyên góp được lần lượt là a(quyển) và b(quyển)
(Điều kiện: \(a,b\in Z^+\))
Số sách hai lớp quyên góp được tỉ lệ thuận với số học sinh nên \(\dfrac{a}{32}=\dfrac{b}{36}\)
=>\(\dfrac{a}{8}=\dfrac{b}{9}\)
Lớp 7A quyên góp ít hơn lớp 7B là 8 quyển sách nên b-a=8
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{8}=\dfrac{b}{9}=\dfrac{b-a}{9-8}=\dfrac{8}{1}=8\)
=>\(a=8\cdot8=64;b=9\cdot8=72\)
vậy: số quyển sách lớp 7A,7B quyên góp được lần lượt là 64(quyển) và 72(quyển)
a, vì bộ bài có 52 lá,lá át cơ chỉ có một
=>xác xuất của biến cố bác tuân rút ra lá at cơ là 1/52 hoặc 5,2%
(có thiếu hay sai chỗ nào trong bài của mik ko các bạn?)
a: Xét ΔAHB và ΔAHC có
AH chung
\(\widehat{BAH}=\widehat{CAH}\)
AB=AC
Do đó: ΔAHB=ΔAHC
=>\(\widehat{AHB}=\widehat{AHC}\)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
=>AH\(\perp\)BC
b: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
Xét ΔABC có
BD,AH là các đường trung tuyến
BD cắt AH tại G
Do đó: G là trọng tâm của ΔABC
Xét ΔABC có
H là trung điểm của BC
HK//AC
Do đó: K là trung điểm của AB
Xét ΔABC có
G là trọng tâm
K là trung điểm của AB
Do đó: C,G,K thẳng hàng
a,Xét tam giác ABD và tam giác EBD có
góc DAB = góc DEB = 90°
DB chung
góc ABD = góc EBD ( DB là tia phân giác )
=> tam giác ABD = EBD (g.c.g)
b,xét tam giác AND và tam giác ECD có
góc NAD = góc CED = 90°
AD = DE ( tam giác ABD = tam giác EBD )
góc ADN = góc EDC ( 2 góc đối đỉnh )
=> tam giác NAD = CED (g.c.g)
=> AN = EC
c, ta có CA vuông góc NB ( tam giác ABC vuông tại A )
NE vuông góc CB ( DE vuông góc CB )
=> điểm D là trực tâm của tam giác NBC
=> DB vuông góc NC
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC
\(\dfrac{12x^4+10x^3-x-3}{3x^2+x+1}\)
\(=\dfrac{12x^4+4x^3+4x^2+6x^3+2x^2+2x-6x^2-2x-2-x-1}{3x^2+x+1}\)
\(=\dfrac{4x^2\left(3x^2+x+1\right)+2x\left(3x^2+x+1\right)-2\left(3x^2+x+1\right)-x-1}{3x^2+x+1}\)
\(=4x^2+2x-2+\dfrac{-x-1}{3x^2+x+1}\)