K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2020

+ Qua C kẻ đg thẳng vuông góc với AC và cắt AD tại I

Gọi H,K lần lượt là hình chiếu của O,C trên AD.

+ OD là đg trung bình của t/g ACI

=> CI = 2 OD = BD = n

+ OH là đg trung bình của t/g ACK

=> CK = 2 OH = 2h

+ t/g ACI vuông tại C, đg cao CK

Suy ra \(\frac{1}{CK^2}=\frac{1}{AC^2}+\frac{1}{CI^2}\)

\(< =>\frac{1}{\left(2h\right)^2}=\frac{1}{m^2}+\frac{1}{n^2}\)

\(< =>\frac{1}{4h^2}=\frac{1}{m^2}+\frac{1}{n^2}\)

Vậy ta có điều phải chứng minh

12 tháng 7 2020

Bài làm:

Ta có: \(S=\frac{a-d}{b+d}+\frac{d-b}{c+b}+\frac{b-c}{a+c}+\frac{c-a}{d+a}\)

\(S=\left(\frac{a-d}{b+d}+1\right)+\left(\frac{d-b}{c+b}+1\right)+\left(\frac{b-c}{a+c}+1\right)+\left(\frac{c-a}{d+a}+1\right)-4\)

\(S=\frac{a+b}{b+d}+\frac{c+d}{c+b}+\frac{a+b}{a+c}+\frac{c+d}{d+a}-4\)

\(S=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{c+b}+\frac{1}{d+a}\right)-4\)

\(\ge\left(a+b\right)\frac{\left(1+1\right)^2}{a+b+c+d}+\left(c+d\right)\frac{\left(1+1\right)^2}{a+b+c+d}-4\)

\(=\frac{4\left(a+b\right)}{a+b+c+d}+\frac{4\left(c+d\right)}{a+b+c+d}-4=\frac{4\left(a+b+c+d\right)}{a+b+c+d}-4=4-4=0\)

Dấu "=" xảy ra khi: \(a=b=c=d\)

Vậy \(Min\left(S\right)=0\Leftrightarrow a=b=c=d\)

Học tốt!!!!