K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2020

\(x^2y^2-16xy+99=9x^2+36y^2+13x+26y\)

\(\Leftrightarrow\left(xy+10\right)^2=9\left(x+2y\right)^2+13\left(x+2y\right)+1\)

Khi đó ta dễ thấy:

\(\left(3x+6y\right)^2< \left(xy+10\right)^2< \left(3x+6y+2\right)^2\)

\(\Rightarrow\left(xy+10\right)^2=\left(3x+6y+1\right)^2\)

Đến đây thì quá dễ rồi nhá, bạn tự làm nốt

13 tháng 7 2020

Sử dụng AM - GM dạng cộng mẫu :

\(\frac{1}{x+1}+\frac{4}{y+2}+\frac{9}{z+3}\)

\(\ge\frac{\left(1+2+3\right)^2}{x+y+z+1+2+3}\)

\(=\frac{36}{x+y+z+6}\)

\(=\frac{36}{12}=3\)

Đẳng thức xảy ra tại ......

Trên kia là sai lầm thường gawpjjj ( theo mình nghĩ thế tại nhác tìm dấu bằng )

thứ 2 là wolfram alpha bảo không có minimize: