Cho biểu thức: \(P=\left(\frac{x-1}{x+3\sqrt{x}-4}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right):\frac{x+2\sqrt{x}+1}{x-1}+1\)
1 Rút gọn P và tìm giá trị nhỏ nhất của P.
2 Xác địch x nguyên để P đạt giá trị nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + 2y2 + 2xy + 3y - 4 = 0
<=> 4x2 + 8y2 + 8xy + 12y - 16 = 0
<=> (4x2 + 8xy + 4y2) + (4y2 + 12y + 9) = 25
<=> (2x+ 2y)2 + (2y + 3)2 = 25 = 0 + 52 = 32 + 42
Do x;y là số nguyên và 2y + 3 là số lẻ => (2y + 3)2 thuộc {52; 32}
Xét các TH xảy ra:
+)\(\hept{\begin{cases}2x+2y=0\\2y+3=5\end{cases}}\) <=> \(\hept{\begin{cases}x+y=0\\y=1\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
+) \(\hept{\begin{cases}2x+2y=0\\2y+3=-5\end{cases}}\)
+) \(\hept{\begin{cases}2x+2y=4\\2y+3=3\end{cases}}\)
+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=-3\end{cases}}\)
+) \(\hept{\begin{cases}2x+2y=4\\2y+3=-3\end{cases}}\)
+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=3\end{cases}}\)
(Tự tính x;y)
Bài làm:
Ta có: \(A=\sqrt{3+2x-x^2}=\sqrt{4-\left(x^2-2x+1\right)}=\sqrt{4-\left(x-1\right)^2}\)
Mà \(4-\left(x-1\right)^2\ge0\left(\forall x\right)\)vì điều kiện để A xác định
Nên dấu "=" xảy ra khi: \(4-\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)^2=4\)
\(\Rightarrow\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Vậy \(Min\left(A\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Ta có : \(\frac{x}{y^2+z^2}=\frac{x}{1-x^2}\) ( vì \(x^2+y^2+z^2=1\))
Vì x^2 + y^2 + z^2 = 1 ; x,y,z > 0 nên : 0 < x ; y ; z < 1
Đến đây , dùng UCT , ta đánh giá được : \(\frac{x}{y^2+z^2}=\frac{x}{1-x^2}\ge\frac{\sqrt{3}}{2}x^2+\frac{\sqrt{3}}{3}\) ( với 0 < x < 1 ) (1)
CMTT , ta có : \(\frac{y}{x^2+z^2}\ge\frac{\sqrt{3}}{2}y^2+\frac{\sqrt{3}}{3};\frac{z}{x^2+y^2}\ge\frac{\sqrt{3}}{2}z^2+\frac{\sqrt{3}}{3}\) (2)
Lấy (1) cộng (2) ra đpcm ....
Sai đề nhá, đáng lẽ \(0\le x,y,z\le1\)
Ta dễ có:
\(1+y+zx\le x^2+xy+xz\Rightarrow\frac{x}{1+y+zx}\ge\frac{x}{x^2+xy+xz}=\frac{1}{x+y+z}\)
Tương tự:
\(\frac{y}{1+z+xy}\ge\frac{1}{x+y+z};\frac{z}{1+z+yz}\ge\frac{1}{x+y+z}\)
\(\Rightarrow\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+z+yz}\ge\frac{3}{x+y+z}\)
Đẳng thức xảy ra tại x=y=z=1
Trả lời:
\(\sqrt{9x^2+6x+1}=5\)
\(\Leftrightarrow\sqrt{\left(3x+1\right)^2}=5\)
\(\Leftrightarrow\left|3x+1\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=5\\3x+1=-5\end{cases}\Leftrightarrow}\orbr{\begin{cases}3x=4\\3x=-6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-2\end{cases}}\)
Vậy \(x\in\left\{\frac{4}{3};-2\right\}\)
Bài làm:
Ta có: \(\sqrt{9x^2+6x+1}=5\)
\(\Leftrightarrow9x^2+6x+1=5^2\)
\(\Leftrightarrow\left(3x+1\right)^2=5^2\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=5\\3x+1=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=4\\3x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=-2\end{cases}}\)
Vậy tập nghiệm của PT \(S=\left\{-2;\frac{4}{3}\right\}\)
Học tốt!!!!
đặt \(\left(a;b;c\right)=\left(x;2y;3z\right)\)\(\Rightarrow\)\(abc=1\)
bđt \(\Leftrightarrow\)\(\Sigma\frac{1}{a^3+b^3+1}\le1\)
\(VT\le\Sigma\frac{1}{ab\left(a+b\right)+abc}=\Sigma\frac{1}{ab\left(a+b+c\right)}=1\)
@AZM: Thật không may dấu "=" không xảy ra bạn nhé :))
Ta có:\(S=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\)
Đặt \(a=\frac{x^2+y^2}{xy}\ge\frac{2\sqrt{x^2y^2}}{xy}=2\)
Khi đó:\(S=a+\frac{1}{a}=\left(\frac{a}{4}+\frac{1}{a}\right)+\frac{3a}{4}\ge2\sqrt{\frac{a}{4}\cdot\frac{1}{a}}+\frac{3\cdot2}{4}=\frac{5}{2}\)
Đẳng thức xảy ra tại x=y
Bài làm:
Ta có: \(\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\ge2\sqrt{\frac{\left(x^2+y^2\right)}{xy}.\frac{xy}{\left(x^2+y^2\right)}}=2.1=2\)
Dấu "=" xảy ra khi: \(x=y\)
Vậy GTNN biểu thức là 2 khi \(x=y\)
Học tốt!!!!