Cho M= \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
Tìm x nguyên để M nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình xài p,q,r nhé :))
Ta có:
\(a^3+b^3+c^3=p^3-3pq+3r=1-3q+3r\)
\(a^4+b^4+c^4=1-4q+2q^2+4r\)
Khi đó BĐT tương đương với:
\(\frac{1}{8}+2q^2+4r-4q+1\ge1-3q+3r\)
\(\Leftrightarrow2q^2-q+\frac{1}{8}+r\ge0\)
\(\Leftrightarrow2\left(q-\frac{1}{4}\right)+r\ge0\) ( đúng )
\(a^4+b^4+c^4+\frac{1}{8}\left(a+b+c\right)^4\ge\left(a^3+b^3+c^3\right)\left(a+b+c\right)\)
Khúc đầu có gì đâu nhỉ: \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=p^3-3\left[\left(a+b+c\right)\left(ab+bc+ca\right)-abc\right]\)
\(=p^3-3pq+3r\)
--------------------------------------
\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\right]^2-2\left[\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\right]\)
\(=\left(p^2-2q\right)^2-2\left(q^2-2pr\right)\)
\(=p^4-4p^2q+2q^2+4pr\)
Xem thêm các đẳng thức thông dụng tại: https://bit.ly/3hllKCq
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
mình trả lời hơi muộn :(
A B C H
1, Theo giả thiết ta có C = 45* nên tam giác ABC là tam giác vuông cân
Suy ra AB = AC = 2 (cm) Mà theo đánh giá của Pitago thì :BC^2 = 8 <=> BC = căn 8
Ta có hệ thức lượng sau : AB.AC=AH.BC <=> 4=căn 8 . AH<=> AH=2/căn2
Lại có hệ thức lượng sau : AC^2=CH.BC<=>4=căn 8 . CH <=> CH=2/căn2
Mặt khác : +)Cos alpha = AB/BC = 2/căn8 = 1/căn2
+)Cos beta = AC/BC = 2/căn8 = 1/căn2
+) Sin alpha = AC/BC = 2/căn8 = 1/căn2
+) Sin beta = AB/BC = 2/căn8 = 1/căn2
Vậy ...
Mấy câu còn lại để từ từ mình làm dần
![](https://rs.olm.vn/images/avt/0.png?1311)
+) Đặt: AB = AC = a
=> BC = a\(\sqrt{2}\)
D là trung điểm của AC -> AD = DC = a/2
=> BD = \(\frac{\sqrt{5}}{2}\)a ( pitago cho tam giác ABD vuông tại A )
+) \(\Delta\)ABD ~ \(\Delta\)ICD ( tự chứng minh )
=> \(\frac{AD}{DI}=\frac{BD}{CD}\Rightarrow\frac{\frac{a}{2}}{DI}=\frac{\frac{\sqrt{5}a}{2}}{\frac{a}{2}}\Rightarrow DI=\frac{a}{2\sqrt{5}}\)
+) \(\Delta\)DIC vuông tại I có IH là đường cao đáy DC
=> \(DI^2=DH.DC\Rightarrow DH=\frac{\frac{a^2}{4.5}}{\frac{a}{2}}=\frac{a}{10}\)=> AH = AD + DH = a/2 + a/10 = 3/5 (1)
\(IH^2=DI^2-DH^2=\frac{a^2}{20}-\frac{a^2}{100}=\frac{a^2}{25}\)=> IH = a/5 (2)
Từ (1) và (2) => AH = 3 IH
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\frac{3}{a}+\frac{3}{b}=3\left(\frac{1}{a}+\frac{1}{b}\right)\ge3.\frac{4}{a+b}=4.\frac{3}{a+b}\)
\(\frac{2}{b}+\frac{2}{c}\ge4.\frac{2}{b+c}\)
\(\frac{1}{c}+\frac{1}{a}\ge4.\frac{1}{a+c}\)
=> \(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\ge4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Dấu "=" xảy ra <=> a = b = c
![](https://rs.olm.vn/images/avt/0.png?1311)
Trả lời:
\(M=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để \(M\inℤ\Leftrightarrow1+\frac{4}{\sqrt{x}-3}\inℤ\)
\(\Rightarrow\frac{4}{\sqrt{x}-3}\inℤ\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Vậy \(x\in\left\{1,4,16,25,49\right\}\) thì \(M\inℤ\)
Đk: x \(\ge\)0; x \(\ne\)9
M = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để M nguyên <=> \(\frac{4}{\sqrt{x}-3}\in Z\)
<=> \(4⋮\sqrt{x}-3\)<=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Do \(\sqrt{x}-3\ge-3\) => \(\sqrt{x}-3\in\left\{\pm1;\pm2;4\right\}\)
Lập bảng:
Vậy ....