Cho tam giác ABC nhọn, AB = AC, đường cao BM. Chứng minh rằng \(\frac{AM}{MC}+1=2\left(\frac{AB}{BC}\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Hình thang MNEF vuông tại M, F có EF là đáy lớn. Hai đường chéo ME và NF vuông góc với nhau tại O
a) Cho biết MN = 9cm và MF = 12cm, Hãy giải tam giác MNF,
MN=9;MF=12; FN=√9^2+12^2)=3.√(9+16)=15
^F=actan(3/4)
^N=artan(4/3)
S=1 /2.9.12=54
hm=2S/NF=36/5
...
tính MO
MO=hm=36/5
và FO,
FO=√MF^2-MO^2)=9√(1-4^2/5^2)=27/5
kẻ NF ????? vuông góc với EF tại H.

Trả lời:
\(\frac{4}{\sqrt{7}-\sqrt{3}}+\frac{6}{3+\sqrt{3}}+\frac{\sqrt{7}-7}{\sqrt{7}-1}\)
\(=\frac{4.\left(\sqrt{7}+\sqrt{3}\right)}{7-3}+\frac{6.\left(3-\sqrt{3}\right)}{9-3}-\frac{7-\sqrt{7}}{\sqrt{7}-1}\)
\(=\frac{4.\left(\sqrt{7}+\sqrt{3}\right)}{4}+\frac{6.\left(3-\sqrt{3}\right)}{6}-\frac{\sqrt{7}.\left(\sqrt{7}-1\right)}{\sqrt{7}-1}\)
\(=\sqrt{7}+\sqrt{3}+3-\sqrt{3}-\sqrt{7}\)
\(=3\)
Học tốt

Ta có: \(P=\frac{\sqrt{x}-4}{\sqrt{x}}\times\frac{x+\sqrt{x}+1}{\sqrt{x}-4}\)
\(P=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)\(\left(ĐK:x>0\right)\)
Ta lấy \(P-2=\frac{x+\sqrt{x}+1}{\sqrt{x}}-2\)
\(=\frac{x+\sqrt{x}+1-2\sqrt{x}}{\sqrt{x}}\)
\(=\frac{x-\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{3}{4}}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}}{\sqrt{x}}\)
Vì \(x>0\Rightarrow\sqrt{x}>0\)
\(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\frac{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}}{\sqrt{x}}>0\)
\(\Rightarrow P-2>0\)
\(\Rightarrow P>2\)
Học tốt

ĐKXĐ: \(\hept{\begin{cases}x\ge0\\\sqrt{x}-2\ne0\end{cases}}\)<=>\(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
Ta có \(C=\left(x-1\right)-\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}\)
<=>\(C=\left(x-1\right)-\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}\)
<=>\(C=x-1-\left(2\sqrt{x}+1\right)\)
<=>\(C=x-2\sqrt{x}-2\)
<=>\(C=\left(\sqrt{x}-1\right)^2-3\ge-3\)
Vậy GTNN của C là -3. Dấu "=" xảy ra <=> x=1 (tm ĐKXĐ)

Trả lời:
\(\left(2\sqrt{2}-\sqrt{5}+3\sqrt{2}\right).\left(\sqrt{18}-\sqrt{20}+2\sqrt{2}\right)\)
\(=\left(5\sqrt{2}-\sqrt{5}\right).\left(3\sqrt{2}-2\sqrt{5}+2\sqrt{2}\right)\)
\(=\left(5\sqrt{2}-\sqrt{5}\right).\left(5\sqrt{2}-2\sqrt{5}\right)\)
\(=50-10\sqrt{10}-5\sqrt{10}+10\)
\(=60-15\sqrt{10}\)

Trả lời:
\(G=\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(\frac{2}{\sqrt{2}}.G=\frac{2}{\sqrt{2}}.\left(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\right)\)
\(\sqrt{2}.G=\frac{2.\left(2+\sqrt{3}\right)}{\sqrt{2}.\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)}+\frac{2.\left(2-\sqrt{3}\right)}{\sqrt{2}.\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)
\(\sqrt{2}.G=\frac{4+2\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{4-2\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)
\(\sqrt{2}.G=\frac{3+2\sqrt{3}+1}{2+\sqrt{3+2\sqrt{3}+1}}+\frac{3-2\sqrt{3}+1}{2-\sqrt{3-2\sqrt{3}+1}}\)
\(\sqrt{2}.G=\frac{\left(\sqrt{3}+1\right)^2}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{\left(\sqrt{3}-1\right)^2}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(\sqrt{2}.G=\frac{\left(\sqrt{3}+1\right)^2}{2+\sqrt{3}+1}+\frac{\left(\sqrt{3}-1\right)^2}{2-\sqrt{3}+1}\)
\(\sqrt{2}.G=\frac{\left(\sqrt{3}+1\right)^2}{3+\sqrt{3}}+\frac{\left(\sqrt{3}-1\right)^2}{3-\sqrt{3}}\)
\(\sqrt{2}.G=\frac{\left(\sqrt{3}+1\right)^2}{\sqrt{3}.\left(\sqrt{3}+1\right)}+\frac{\left(\sqrt{3}-1\right)^2}{\sqrt{3}.\left(\sqrt{3}-1\right)}\)
\(\sqrt{2}.G=\frac{\sqrt{3}+1}{\sqrt{3}}+\frac{\sqrt{3}-1}{\sqrt{3}}\)
\(\sqrt{2}.G=\frac{2\sqrt{3}}{\sqrt{3}}\)
\(\sqrt{2}.G=2\)
\(G=\sqrt{2}\)
Học tốt

kẻ đường cao AH của tam giác ABC.
Xét tam giác ABH và tam giác BCM có:
Thật vậy: xét tam giác AHC và tam giác BMC có:
Từ đó ta có đpcm.