Hãy viết số 100 dưới dạng tổng các số lẻ liên tiếp lớn hơn 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


22022 = (24)505.22 = \(\overline{...6}\)505. 4 = \(\overline{...4}\) = \(\overline{...0}\) + 4 ⇒ 22022 : 5 dư 4
Ta có: `2^2022 = (2^4)^505 . 2^2`.
`= 16^505 . 4 equiv 1^505 . 4 equiv 1 . 4 equiv 4 (mod 5)`.

c) P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
Dễ thấy \(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}.50=\dfrac{1}{3}\)(1)
Tương tự
\(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>50.\dfrac{1}{200}=\dfrac{1}{4}\)(2)
Từ (1) và (2) ta được
\(P>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\)
P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
\(\overline{50\text{ hạng tử }}\) \(\overline{50\text{ hạng tử }}\)
\(< \left(\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\right)+\left(\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\right)\)
\(=\dfrac{1}{100}.50+\dfrac{1}{150}.50=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
\(\Rightarrow P< \dfrac{5}{6}< 1\)

Lời giải:
a. Để $B$ là phân số thì $x+3\neq 0\Leftrightarrow x\neq -3$
b. Để $B$ nhận giá trị nguyên thì $x+3$ là ước của $7$
$\Rightarrow x+3\in\left\{1;-1;7;-7\right\}$
$\Rightarrow x\in\left\{-2; -4; 4; -10\right\}$
c. Để $B< 0$ thì $7$ và $x+3$ trái dấu nhau. Mà $7>0$ nên $x+3<0$
$\Leftrightarrow x<-3$
d. Để $B$ đạt giá trị lớn nhất thì $x+3$ là số dương nhỏ nhất.
Với $x$ nguyên, $x+3$ dương nhỏ nhất bằng $1$
Khi đó: $B_{\max}=\frac{7}{1}=7$. Giá trị này đạt tại $x+3=1$ hay $x=-2$

\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2004.2005.2006}\)
\(=2.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)+2.\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)+...+2.\left(\dfrac{1}{2004.2005}-\dfrac{1}{2005.2006}\right)\)
\(=2.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{2004.2005}-\dfrac{1}{2005.2006}\right)\)
\(=2.\left(\dfrac{1}{1.2}-\dfrac{1}{2005.2006}\right)\)
\(=1-\dfrac{2}{2005.2006}\)
\(=\dfrac{2011014}{2011015}\).
Ta có:
\(M=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2004.2005.2006}\)
\(M=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{2004.2005.2006}\right)\)
\(M=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2004.2005}-\dfrac{1}{2005.2006}\right)\)
\(M=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2005.2006}\right)\)

\(N=\dfrac{2006}{1.2}+\dfrac{2006}{2.3}+...+\dfrac{2006}{2006.2007}\)
\(N.2006=\dfrac{2006}{1}-\dfrac{2006}{2}+\dfrac{2006}{2}-\dfrac{2006}{3}+...+\dfrac{2006}{2006}-\dfrac{2006}{2007}\)
\(N.2006=2006-\dfrac{2006}{2007}\)
\(N=2006-\dfrac{2006}{2007}:2006\)
\(N=2006-\dfrac{1}{2007}\)

CM : Gx = 16x - 15x - 1 ⋮ 225 ∀ x \(\in\) N
Phương páp phản chứng: giả sử Gx = 16x - 15x - 1 ⋮ 225 ∀ x \(\in\)N
ta có: Với x = 0 ⇒ 160 - 150 - 1 = 1 - 1 - 1 = -1 ⋮ 225 ( vô lý)
Vậy điều giả sử là sai hay việc chứng minh
Gx = 16x - 15x - 1 ⋮ 225 là điều không thể xảy ra
Bạn cần viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết ntn khó đọc quá.
B = \(\dfrac{1}{1+2}\)+\(\dfrac{1}{1+2+3}\)+\(\dfrac{1}{1+2+3+4}\)+...+\(\dfrac{1}{1+2+3+4+...+99}\)

\(B=\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+4+...+99}\)
\(=\dfrac{1}{\dfrac{2.3}{2}}+\dfrac{1}{\dfrac{3.4}{2}}+\dfrac{1}{\dfrac{4.5}{2}}+...+\dfrac{1}{\dfrac{99.100}{2}}\)
\(=2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\right)\)
\(=2.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=2.\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\)
\(=\dfrac{49}{50}\).
1+2+3+....+99=100.99/2
1+2+3+...+98=99.98/2
.
.
.
1+2=3.2/2
=> B=2/(2.3)+ 2/(3.4)+...+2/(100.99)
=2.(1/2-1/3+1/3-1/4+...+1/99-1/100)
=2.(1/2-1/100)

P(x) = 7x + 3x - 1 \(⋮9\)
Với x = 3k + 1 (k \(\inℕ^∗\))
= 73k + 1 + 33k + 1 - 1
= 343k.3 + 27k.3 - 1
= (343k.3 - 3) + 27k.3 + 2
= 3(343k - 1) + 27k.3 + 2
= 3(343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.3 + 2
= 3.342(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.3 + 2
=> P(x) : 9 dư 2
Với x = 3k + 2
P(x) = 73k + 2 + 33k + 2 - 1
= 343k.49 + 27k.9 - 1
= (343k.49 - 49) + 27k.9 + 48
= 49(343k - 1) + 27k.9 + 48
= 49(343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.9 + 45 + 3
=> P(x) : 9 dư 3
Với x = 3k
Khi đó P(x) = 73k + 33k - 1
= (343k - 1) + 27k
= (343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k
= 342(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k \(⋮9\)
Vậy P(x) \(⋮\Leftrightarrow x⋮3\)
Cách 1 : \(100=49+51\)
Cách 2 : \(100=1+3+5+7+9+11+13+15+17+19\)