Cho S=1/5^2+1/7^2+1/9^2+...+1/103^2 chứng minh S < 5/32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\dfrac{1}{7}\) = \(\dfrac{2}{14}\) < \(\dfrac{2}{b}\) (1) vì b < 7 < 14
\(\dfrac{2}{b}\) < \(\dfrac{2}{2}\) vì b > 2
\(\dfrac{2}{b}\) < \(\dfrac{2}{2}\) = 1 (2)
Từ (1) và (2) ta có với 1 < 2 < 7 thì : \(\dfrac{1}{7}\) < \(\dfrac{2}{b}\)< 1 (đpcm)

Vì 81 = 9 x 9
cạnh hình vuông : 9 m
Chu vi hình vuông : 9 x 4 = 36 (m)
Đs....

\(a.2^{1000}\left(lasochinhphuong\right)\)
\(b.3^{1993}\left(khongphai\right)\)
\(c.4^{161}\text{=}2^{322}\left(lasochinhphuong\right)\)
\(d.19^{2^{1945}}\text{=}19^{3890}\left(lasochinhphuong\right)\)
Số chính phương là số viết được dưới dạng a^2
Chọn a,d.
a) 2^100 = 2.^2.500 = (2^500)^2
a = 2^500
d) 19^2 = 19^2.2^1944 = (19^2^2944)^2
a = 19^2^1944

Ta có: A - B = 1111....1111 - 2 x 1111...111
(100 chữ số 1) (50 chữ số 1)
= 1111.....1111 x (1000...0001 - 2)
(50 chữ số 1) (có 51 chữ số trong đó có 49 chữ số 0)
= 1111.....11111 x 9999....9999
(50 chữ số 1) (50 chữ số 9)
= 1111...1111 x 9 x 1111....1111
(50 chữ số1) (50 chữ số1)
= (1111....1111)^2 x 3^2
= (1111.....1111 x 3)^2
Vậy hiệu A - B là một số chính phương

4 số tự nhiên liên tiếp là n,n+1,n+2,n+3
viết theo hàng nghìn,trăm,chục ,đơn vị là
1000n+100(n+1)+10(n+2)+n+3=1111n+123
viết theo thứ tự ngược lại là
1000(n+3)+100(n+2)+10(n+1)+n=1111n+321...
vậy lớn hơn số ban đầu là 3210-123=3087
Gọi số hàng nghìn là a \(\Rightarrow\) 0<a<10
Số cần tìm là:
a.\(10^3\) +(a-1).\(10^2\) + (a+1).10 + (a+2)
a.(\(10^3\) + \(10^2\)+10+1) - 100 + 10 + 2
1111.a - 88 = 11.101.a - 8.11
11(101.a-8)
=> 101.a-8=11.\(n^2\)
( 101a - 8) chia hết 11
101 chia 11 dư 2 và -8 chia 11 dư 3
=> a=4
Với a = 4 => \(\dfrac{101.4-8}{11}=36=6^2\)
Vậy số cần tìm là: 4356

Lời giải:
Ta thấy $3n+13-(n+10)=2n+3$ lẻ nên $3n+13, n+10$ là 2 số khác tính chẵn lẻ.
Nghĩa là luôn tồn tại 1 số chẵn và 1 số lẻ trong 2 số đã cho.
$\Rightarrow (n+10)(3n+13)\vdots 2$ với mọi số tự nhiên $n$
\(S=\dfrac{1}{5^2}+\dfrac{1}{7^2}+\dfrac{1}{9^2}+...+\dfrac{1}{103^2}\)
\(\Rightarrow2S=\dfrac{2}{5^2}+\dfrac{2}{7^2}+\dfrac{2}{9^2}+...+\dfrac{2}{103^2}\)
Có:
\(\dfrac{2}{5^2}=\dfrac{2}{5.5}< \dfrac{2}{4.6}=\dfrac{1}{4}-\dfrac{1}{6}\)
\(\dfrac{2}{7^2}=\dfrac{2}{7.7}< \dfrac{2}{6.8}=\dfrac{1}{6}-\dfrac{1}{8}\)
\(\dfrac{2}{9^2}=\dfrac{2}{9.9}< \dfrac{2}{8.10}=\dfrac{1}{8}-\dfrac{1}{10}\)
...
\(\dfrac{2}{103^2}=\dfrac{2}{103.103}< \dfrac{1}{102.104}=\dfrac{1}{102}-\dfrac{1}{104}\)
\(\Rightarrow2S< \dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}+...+\dfrac{1}{102}-\dfrac{1}{104}\)
\(\Rightarrow2S< \dfrac{25}{104}\)
\(\Rightarrow S< \dfrac{25}{208}< \dfrac{5}{32}\)
\(\Rightarrow S< \dfrac{5}{32}\).
Ta có:
\(\dfrac{1}{5^2}< \dfrac{1}{4.6}\)
\(\dfrac{1}{7^2}< \dfrac{1}{6.8}\)
\(\dfrac{1}{9^2}< \dfrac{1}{8.10}\)
\(...\)
\(\dfrac{1}{103^2}< \dfrac{1}{102.104}\)
\(\Rightarrow S\)\(< \dfrac{1}{4.6}+\dfrac{1}{6.8}+\dfrac{1}{8.10}+...+\dfrac{1}{102.104}\)\(\left(1\right)\)
Đặt \(A=\dfrac{1}{4.6}+\dfrac{1}{6.8}+\dfrac{1}{8.10}+...+\dfrac{1}{102.104}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{4.6}+\dfrac{2}{6.8}+\dfrac{2}{8.10}+...+\dfrac{2}{102.104}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}+...+\dfrac{1}{102}-\dfrac{1}{104}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{4}-\dfrac{1}{104}\right)\)
\(=\dfrac{1}{2}.\dfrac{25}{104}\)
\(=\dfrac{25}{208}< \dfrac{25}{160}\)\(\left(2\right)\)
Mà \(\dfrac{25}{160}=\dfrac{5}{32}\)\(\left(3\right)\)
Từ \(\left(1\right),\left(2\right)\) và \(\left(3\right)\)
\(\Rightarrow S< \dfrac{5}{32}\)