CMR nếu \(a^2⋮p^3\)thì \(a^2⋮p^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


pt <=> \(\frac{3x-1}{x+2}=4\)
<=> \(3x-1=4\left(x+2\right)\)
<=> \(3x-1=4x+8\)
<=> \(x=-9\)
VẬY \(x=-9\)

Ap dung bdt Holder ta co
\(VP=\left(a^3+b^3+0^3\right)\left(b^3+y^3+0^3\right)\left(c^3+z^3+0^3\right)\ge\left(abc+xyz+0\right)^3=VT\)
P/s: Day la 1 he qua quen thuoc cua bdt Holder

mình có sửa lại đề 1 chút!
đặt \(T=\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=1\)
đặt \(u=a^4;v=b^6\)(a,b>0) ta có
\(T=\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}=\frac{a^4-8a^2b^2+4b^2}{a^2-2b^2+2ab}+3b^2\)
vậy \(T=\frac{a^4-8a^2b^2+4b^4}{a^2-2b^2+2ab}+3b^2=\frac{a^4-5a^2b^2-2b^4+6ab^3}{a^2-2b^2+2ab}=a^2-2ab+b^2\)
từ đó suy ra \(\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=\left|\sqrt[4]{u}-\sqrt[6]{v}\right|+\sqrt[6]{v}\)
vì \(u^3\ge v^2\)nên \(\left|\sqrt[4]{u}-\sqrt[6]{v}\right|+\sqrt[6]{v}=\sqrt[4]{u}\)
\(\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=1\)
với u=1 ta có \(T=\sqrt{\frac{1-8\sqrt[6]{v^2}+4\sqrt[3]{v^2}}{1-2\sqrt[3]{v}+2\sqrt[6]{v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}\)
nếu \(1-2\sqrt[3]{v}+2\sqrt[6]{v}=0\)thì \(\sqrt[3]{v}=\frac{3+1}{2}>0\)
do \(v^2>1=u^3\), mâu thuẫn suy ra \(1-2\sqrt[3]{v}+2\sqrt[6]{v}\ne0\)
tóm lại với \(u^3\ge v^2\)và u,v\(\inℚ^+\)để \(\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=1\)cần và đủ là u=1 và v<1, v\(\inℚ^+\)được lấy tùy ý

\(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)
\(=\left(\sqrt{3-\sqrt{5}}\right)^2+2\sqrt{\left(3-\sqrt{5}\right).\left(3+\sqrt{5}\right)}+\left(\sqrt{3+\sqrt{5}}\right)^2\)
\(=3-\sqrt{5}+2.\sqrt{3^2-5}+3+\sqrt{5}\)
\(=6+2.\sqrt{4}=6+2.2=6+4=10\)

Bài làm:
Ta có: \(M=\sqrt{x^2+2x+5}=\sqrt{\left(x+1\right)^2+4}\)
Mà \(\left(x+1\right)^2+4\ge4\left(\forall x\right)\)
=> \(M\ge2\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x+1\right)^2=0\Rightarrow x=-1\)
Vậy \(M_{Min}=2\Leftrightarrow x=-1\)
\(M=\sqrt{x^2+2x+5}\)
\(\Leftrightarrow M=\sqrt{x^2+2x+1+4}\)
\(\Leftrightarrow M=\sqrt{\left(x+1\right)^2+4}\ge\sqrt{4}=2\)
Min M = 2
\(\Leftrightarrow x=-1\)
Với p là số nguyên tố bạn nhé
Ta có a2 là số chính phương nên các ước nguyên tố có số mũ chẵn nhưng p3 có số mũ lẻ nên a2 bắt buộc phải chia hết cho p4
Ta có đpcm