Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x\left(3x^2+4x+1\right)\)
\(=2x.3x^2+2x.4x+2x.1\)
\(=6x^3+8x^2+2x\)
------------------
\(\left(2x+1\right)\left(x-2\right)\)
\(=2x\left(x-2\right)+1.\left(x-2\right)\)
\(=2x.x-2x.2+x-2\)
\(=2x^2-4x+x-2\)
\(=2x^2+\left(-4x+x\right)-2\)
\(=2x^2-3x-2\)
a, Thu gọn và sắp xếp đa thức theo lũy thừa giảm dần của biến.
P(\(x\)) = 7\(x^3\) + 4\(x^4\) - 2\(x^2\) + 3\(x^2\) - 3\(x^3\) - \(x^4\) + 5 - 4\(x^3\)
P(\(x\)) = (7\(x^3\) - 3\(x^3\) - 4\(x^3\))+ (4\(x^4\) - \(x^4\)) - (2\(x^2\) - 3\(x^2\)) + 5
P(\(x\)) = 0 + 3\(x^4\) - (-\(x^2\)) +5
P(\(x\)) = 3\(x^4\) + \(x^2\) + 5
b; Hệ số cao nhất là 3; bậc của đa thức là 4; hệ số tự do của đa thức trên là 5
Olm chào em, hôm nay Olm.vn sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp thế như sau:
Giải:
\(\dfrac{x}{y}\) = \(\dfrac{3}{-2}\) và \(x-y\) = 2y
\(x\) - y = 2y ⇒ \(x\) = 2y + y ⇒ \(x\) = 3y
Thay \(x=3y\) vào biểu thức \(\dfrac{x}{y}\) = \(\dfrac{3}{-2}\) ta có: \(\dfrac{3y}{y}\) = \(\dfrac{3}{-2}\)
⇒ 3 = \(\dfrac{3}{-2}\) (vô lí)
Vậy không có giá trị nào của \(x;y\) thỏa mãn đề bài.
a) Thể tích hộp đựng bánh:
3 × 1,5 × 2 = 9 (dm³)
b) Diện tích xung quanh hộp đựng bánh:
(3 + 1,5) × 2 × 2 = 18 (dm²)
Diện tích đáy:
3 × 1,5 = 4,5 (dm²)
Diện tích giấy cần dùng:
18 + 2 × 4,5 = 27 (dm²)
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó ΔBAD=ΔBED
b: Xét ΔBKC có
KE,CA là các đường cao
KE cắt CA tại D
Do đó: D là trực tâm của ΔBKC
=>BD\(\perp\)KC
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
\(\widehat{ABD}=\widehat{MBD}\)
Do đó: ΔBAD=ΔBMD
=>BA=BM
Xét ΔBAM có BA=BM và \(\widehat{ABM}=60^0\)
nên ΔBAM đều
b: ta có: ΔBAM đều
=>\(\widehat{BAM}=\widehat{BMA}=60^0\); MA=MB=AB
\(\widehat{MAB}+\widehat{MAC}=\widehat{BAC}\)
=>\(\widehat{MAC}+60^0=90^0\)
=>\(\widehat{MAC}=30^0\)
ΔBAC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}+60^0=90^0\)
=>\(\widehat{ACB}=30^0\)
Xét ΔMAC có \(\widehat{MAC}=\widehat{MCA}\left(=30^0\right)\)
nên ΔMAC cân tại M
=>\(\widehat{AMC}=180^0-2\cdot\widehat{ACM}=120^0\)
\(x\) tỉ lệ thuận với \(y\) theo hệ số tỉ lệ là 2
\(\Rightarrow x=2y\)
\(y\) tỉ lệ thuận với \(z\) theo hệ số tỉ lệ \(-\dfrac{1}{2}\)
\(\Rightarrow y=\dfrac{-1}{2}.z\)
\(\Rightarrow x=2y=2.\left(-\dfrac{1}{2}.z\right)=-z\)
Khi \(x=5\Rightarrow-z=5\Rightarrow z=-5\)
x tỉ lệ thuận y theo hệ số tỉ lệ \(k=2\Rightarrow x=2y\)
y và z tỉ lệ nghịch theo hệ số tỉ lệ \(k=-\dfrac{1}{2}\Rightarrow yz=-\dfrac{1}{2}\)
Khi \(x=-5\Rightarrow y=\dfrac{x}{2}=-\dfrac{5}{2}\)
\(\Rightarrow\left(-\dfrac{5}{2}\right).z=-\dfrac{1}{2}\)
\(\Rightarrow z=-\dfrac{1}{2}:\left(-\dfrac{5}{2}\right)=\dfrac{1}{5}\)