K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 3:

1: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔADB=ΔAEC

=>\(AD=AE\)

2: Xét ΔABC có

BD,CE là các đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC

mà HK\(\perp\)BC

nên A,H,K thẳng hàg

=>AK\(\perp\)BC tại K

ΔABC cân tại A

mà AK là đường cao

nên AK là phân giác của góc BAC

Câu 4:

\(f\left(-1\right)\cdot f\left(2\right)\)

\(=\left(-a+b-c+d\right)\cdot\left(8a+4b+2c+d\right)\)

\(=\left(-a+b+c-2c+d\right)\left(8a+4b+4c-2c+d\right)\)

\(=\left(-a-3a-2c+d\right)\left(8a+4\cdot\left(-3a\right)-2c+d\right)\)

\(=\left(-4a-2c+d\right)\left(-4a-2c+d\right)=\left(-4a-2c+d\right)^2\) là bình phương của một số nguyên

x=2022 nên x+1=2023

\(M\left(x\right)=x^{2023}-2023\left(x^{2022}-x^{2021}+x^{2020}-...+x^2-x\right)\)

\(=x^{2023}-\left(x+1\right)\left(x^{2022}-x^{2021}+...+x^2-x\right)\)

\(=x^{2023}-x^{2023}-x^{2022}+x^{2022}+x^{2021}+...-x^3-x^2+x^2+x\)

=x

=2022

a: Sửa đề: ΔAKB và ΔAKC

Xét ΔAKB và ΔAKC có

AK chung

\(\widehat{KAB}=\widehat{KAC}\)

AB=AC

Do đó: ΔAKB=ΔAKC

b: ΔAKB=ΔAKC

=>KB=KC

=>ΔKBC cân tại K

c: Ta có: ΔABC cân tại A

mà AD là đường phân giác

nên AD\(\perp\)BC

\(x^2\left(x+y\right)-y^2\left(x+y\right)+2\left(x^2+y^2\right)+2\left(x+y\right)\)

\(=-2x^2+2y^2+2x^2+2y^2+2\left(x+y\right)\)

\(=4y^2+2\cdot\left(-2\right)=4y^2-4\)

\(M=4x^4+7x^2y^2+3y^4+5y^2\)

\(=4x^4+4x^2y^2+3x^2y^2+3y^4+5y^2\)

\(=4x^2\left(x^2+y^2\right)+3y^2\left(x^2+y^2\right)+5y^2\)

\(=4x^2\cdot5+3y^2\cdot5+5y^2\)

\(=20x^2+20y^2=20\cdot5=100\)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

b: ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HB=\sqrt{15^2-9^2}=12\left(cm\right)\)

\(BC=2\cdot BH=2\cdot12=24\left(cm\right)\)

c: Xét ΔABC có

H là trung điểm của BC

HM//AB

Do đó: M là trung điểm của AC

Xét ΔABC có

CI,AH là các đường trung tuyến

CI cắt AH tại G

Do đó: G là trọng tâm của ΔABC

Xét ΔABC có

G là trọng tâm

M là trung điểm của AC

Do đó: B,G,M thẳng hàng

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔAHB=ΔAKC

=>AH=AK

=>ΔAHK cân tại A

b: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

KC=HB(ΔAHB=ΔAKC)

Do đó: ΔKBC=ΔHCB

=>\(\widehat{KCB}=\widehat{HBC}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

Xét ΔACB có

BH,CK là các đường cao

BH cắt CK tại I

Do đó: I là trực tâm của ΔACB

=>AI\(\perp\)BC tại M

TA có: ΔIBC cân tại I

mà IM là đường cao

nên IM là phân giác của góc BIC

c: Sửa đề: Chứng minh HK//BC

Xét ΔABC có

\(\dfrac{AK}{AB}=\dfrac{AH}{AC}\)

nên KH//BC

a: Xét ΔBAE vuông tạiA và ΔBHE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔBAE=ΔBHE

b: ΔBAE=ΔBHE

=>BA=BH và EA=EH

Ta có: BA=BH

=>B nằm trên đường trung trực của AH(1)

Ta có: EA=EH

=>E nằm trên đường trung trực của AH(2)

Từ (1),(2) suy ra BE là đường trung trực của AH

c: Ta có: \(\widehat{CAH}+\widehat{BAH}=90^0\)

\(\widehat{HAD}+\widehat{BHA}=90^0\)(ΔADH vuông tại D)

mà \(\widehat{BAH}=\widehat{BHA}\)(ΔBAH cân tại B)

nên \(\widehat{CAH}=\widehat{DAH}\)

=>AH là phân giác của góc DAC

Bài 2:

a: P(x)+Q(x)

\(=-3x^3-2x^2-6x+4-3x^3-x^2+4x-3\)

\(=-6x^3-3x^2-2x+1\)

b: 2P(x)-3Q(x)

\(=2\left(-3x^3-2x^2-6x+4\right)-3\left(-3x^3-x^2+4x-3\right)\)

\(=-6x^3-4x^2-12x+8+9x^3+3x^2-12x+9\)

\(=3x^3-x^2-24x+17\)

Bài 1:

\(A=3x^2y-4xy+5xy^2-6+3xy-3x^2y-1\)

\(=\left(3x^2y-3x^2y\right)+\left(-4xy+3xy\right)+5xy^2-7\)

\(=5xy^2-xy-7\)

Khi x=1 và y=-1 thì \(A=5\cdot1\cdot\left(-1\right)^2-1\cdot\left(-1\right)-7\)

=5+1-7

=-1