Câu 5. (0,75 điểm) Một máy bay cất cánh theo phương có góc nâng $23^\circ$ (so với mặt đất như hình vẽ).
Muốn đạt độ cao $3 \, 000$ m so với mặt đất thì máy bay phải bay một đoạn đường là bao nhiêu mét? (kết quả làm tròn đến hàng đơn vị).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng giá ban đầu ba sản phẩm bác Đô mua là:
2 200 000 + 1 500 000 + 12 000 000= 15 700 000 (đồng)
Vì hóa đơn trị giá từ 12000000 đồng trở lên thì giảm 12% nên số tiền 3 sản phẩm sau khi giảm giá là:
15 700 000 - 15 700 000.12%= 13 816 000 (đồng)
Vì hóa đơn trị giá từ 12000000 đồng trở lên thì giảm 12% và kèm theo tiền quà tặng 300 000 đồng nên số tiền bác Đô đã phải trả khi mua hàng là:
13 816 000 - 300 000= 13 516 000 (đồng)
a)
b) Phương trình hoành độ giao điểm của (D₁) và (D₂):
x/2 + 2 = -x + 3
⇔ x/2 + x = 3 - 2
⇔ 3x/2 = 1
⇔ x = 1 : 3/2
⇔ x = 2/3
⇒ y = -2/3 + 3
⇔ y = 7/3
Vậy A(2/3; 7/3)
c) Do (D) // (D₂)
⇒ a = -1
⇒ (D): y = -x + b
Thay x = -2 vào (D₁) ta có:
y = 1/2 . (-2) + 2
⇔ y = 1
Thay x = -2; y = 1 vào (D) ta có:
2 + b = 1
⇔ b = 1 - 2
⇔ b = -1
Vậy (D): y = -x - 1
Bài 3:
a)
b) Xét phương trình hoành độ giao điểm của D1 và D2 có: y = y
⇒ \(\dfrac{1}{2}x+2=-x+3\)
⇒ \(\dfrac{3}{2}x=1\)
⇒ \(x=\dfrac{2}{3}\)
Thay \(x=\dfrac{2}{3}\) vào D2 có \(y=-\dfrac{2}{3}+3=\dfrac{7}{3}\)
⇒ \(A\left(\dfrac{2}{3};\dfrac{7}{3}\right)\)
Vậy D1 cắt D2 tại \(A\left(\dfrac{2}{3};\dfrac{7}{3}\right)\)
c) ĐK: a ≠ 0
Vì (D) // (D2)
⇒ \(\left\{{}\begin{matrix}a=-1\left(TM\right)\\b\ne3\end{matrix}\right.\)
Vì (D) cắt (D1) tại điểm có hoành độ x = 2
Tức là x = -2 và y = 1
Thay x = 2; y = 0 và a = -1(TMĐK) vào D có:
⇒ \(-2\cdot-1+b=1\)
⇒ \(b+2=1\)
⇒ \(b=-1\left(TM\right)\)
Vậy (D) : y = \(-x-1\)
a) \(\sqrt{ }\)20 + 2\(\sqrt{ }\)45 - 3\(\sqrt{ }\)80 + \(\sqrt{ }\)125
= \(\sqrt{ }\)4.5 +2\(\sqrt{ }\)9.5 - 3\(\sqrt{16.5}\)
= 2\(\sqrt{5}\) + 6\(\sqrt{5}\) - 12\(\sqrt{5}\)
= -4\(\sqrt{5}\)
b) \(\dfrac{2\sqrt{3}+3\sqrt{2}}{\sqrt{3}+\sqrt{2}}\) - \(4\sqrt{\dfrac{3}{2}}\)- \(\dfrac{5}{1-\sqrt{6}}\)
= \(\dfrac{2\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}\)- \(\sqrt{16.\dfrac{3}{2}}\) - \(\dfrac{5\left(1+\sqrt{6}\right)}{\left(1-\sqrt{6}\right)\left(1+\sqrt{6}\right)}\)
= 2 - \(\sqrt{24}\) - \(\dfrac{5\left(1+\sqrt{6}\right)}{1-6}\)
= 2 - \(\sqrt{4.6}\) + 1+\(\sqrt{ }\)6
= 2 - 2\(\sqrt{ }\)6 + 1+\(\sqrt{ }\)6
= 3 - \(\sqrt{ }\)6
c) (đề bài) với x khác 4...
= \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)- \(\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
= \(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-2\right)}\)- ....
= \(x-4\sqrt{x}+4\)/ \(\sqrt{x}\left(\sqrt{x}-2\right)\)
= (căn -2)2/ căn x(căn x -2)
= căn x-2/căn x
Lời giải:
** Bổ sung điều kiện $n$ là số nguyên.
$n^2+9n-2\vdots 11$
$\Leftrightarrow n^2+9n-2+22\vdots 11$
$\Leftrightarrow n^2+9n+20\vdots 11$
$\Leftrightarrow (n+4)(n+5)\vdots 11$
$\Rightarrow n+4\vdots 11$ hoặc $n+5\vdots 11$
$\Rightarrow n=11k-4$ hoăc $11k-5$ với $k$ là số nguyên bất kỳ.
Lời giải:
Gọi đường thẳng cần tìm là $(d): y=ax+b$.
Vì $A\in (d)\Rightarrow y_A=ax_A+b$
$\Rightarrow 0=-2a+b(1)$
Vì $B\in (d)\Rightarrow y_B=ax_B+b$
$\Rightarrow -1=0.a+b(2)$
Từ $(1); (2)\Rightarrow b=-1; a=\frac{-1}{2}$
Vậy ptđt cần tìm là $y=\frac{-1}{2}x-1$
Muốn đạt độ cao 30003000 m so với mặt đất thì máy bay phải bay một đoạn đường dài:
\(BC=\dfrac{AB}{sin\left(23^o\right)}=\dfrac{3000}{sin\left(23^o\right)}\approx7678\left(m\right)\)
Kết luận: Muốn đạt độ cao 30003000 m so với mặt đất thì máy bay phải bay một đoạn đường dài gần 7678m