Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: M là trung điểm của AB, N là trung điểm BC
\(\Rightarrow MN\) là đường trung bình của \(\Delta ABC\)
\(\Rightarrow MN\) // \(AC\) hay \(MN\) // \(AD\)
ta có: N là trung điểm BC; D là trung điểm AC
⇒ ND là đường trung bình của \(\Delta ABC\)
⇒ ND // AB hay ND // MA
xét tứ giác NMAD, có:
MN // AD (chứng minh trên)
MA // ND (chứng minh trên)
⇒ tứ giác NMAD là hình bình hành
⇒ MD = AN
b) Xét tứ giác BMDN, có:
\(ND=BM\) (Vì ND là đường trung bình của ΔABC)
Lại có: ND // AB ⇒ ND // BM
⇒ tứ giác BMDN là hình bình hành
Lại có: O là trung điểm của đường chéo MN
⇒ O cũng là trung điểm đường chéo BD
⇒ 3 điểm B; O; D thẳng hàng
a: Xét ΔABC có AD là phân giác
nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)
=>\(\dfrac{DB}{9}=\dfrac{DC}{12}\)
=>\(\dfrac{DB}{3}=\dfrac{DC}{4}\)
mà DB+DC=BC=15cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{15}{7}\)
=>\(DB=3\cdot\dfrac{15}{7}=\dfrac{45}{7}\left(cm\right);DC=4\cdot\dfrac{15}{7}=\dfrac{60}{7}\left(cm\right)\)
b: Vì \(\dfrac{BD}{CD}=\dfrac{45}{7}:\dfrac{60}{7}=\dfrac{3}{4}\)
nên \(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{3}{4}\)
a: Sửa đề: MH//CD
Xét ΔADC có
M,H lần lượt là trung điểm của AD,AC
=>MH là đường trung bình của ΔADC
=>MH//DC và \(MH=\dfrac{DC}{2}\)
Xét ΔCABcó
N,H lần lượt là trung điểm của CB,CA
=>NH là đường trung bình của ΔCAB
=>NH//AB và \(NH=\dfrac{AB}{2}\)
b: MH+HN<=MN
=>\(\dfrac{1}{2}\left(AB+CD\right)< =MN\)
=>\(MN>=\dfrac{1}{2}\left(AB+CD\right)\)
a: Xét ΔABC có EI//BC
nên \(\dfrac{AE}{AB}=\dfrac{AI}{AC}\left(1\right)\)
Xét ΔADC có FI//DC
nên \(\dfrac{AI}{AC}=\dfrac{AF}{AD}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AE}{AB}=\dfrac{AF}{AD}\)
Xét ΔABD có \(\dfrac{AE}{AB}=\dfrac{AF}{AD}\)
nên EF//BD
b: Xét ΔCBA có GI//AB
nên \(\dfrac{CG}{BG}=\dfrac{CI}{IA}\left(3\right)\)
Xét ΔCAD có IH//AD
nên \(\dfrac{CI}{IA}=\dfrac{CH}{HD}\left(4\right)\)
Từ (3),(4) suy ra \(\dfrac{CG}{BG}=\dfrac{CH}{HD}\)
=>\(CG\cdot HD=BG\cdot CH\)
a: Ta có: AK=KO=OH
=>\(AK=KO=OH=\dfrac{1}{3}AH\)
=>\(AO=\dfrac{2}{3}AH;AK=\dfrac{1}{3}AH\)
Xét ΔAHB có EK//BH
nên \(\dfrac{AE}{AB}=\dfrac{AK}{AH}\)
=>\(\dfrac{AE}{AB}=\dfrac{1}{3}\)
Xét ΔABH có MO//BH
nên \(\dfrac{AM}{AB}=\dfrac{AO}{AH}\)
=>\(\dfrac{AM}{AB}=\dfrac{2}{3}\)
Xét ΔABC có EF//BC
nên \(\dfrac{EF}{BC}=\dfrac{AE}{AB}\)
=>\(\dfrac{EF}{BC}=\dfrac{1}{3}\)
=>\(EF=\dfrac{BC}{3}=\dfrac{30}{3}=10\left(cm\right)\)
Xét ΔABC có MP//BC
nên \(\dfrac{MP}{BC}=\dfrac{AM}{AB}\)
=>\(\dfrac{MP}{30}=\dfrac{2}{3}\)
=>\(MP=20\left(cm\right)\)
b: Xét ΔAMP và ΔABC có
\(\widehat{AMP}=\widehat{ABC}\)(hai góc đồng vị, MP//BC)
\(\widehat{MAP}\) chung
Do đó: ΔAMP~ΔABC
=>\(\dfrac{S_{AMP}}{S_{ABC}}=\left(\dfrac{AM}{AB}\right)^2\)
=>\(\dfrac{S_{AMP}}{10.8}=\dfrac{4}{9}\)
=>\(S_{AMP}=4,8\left(dm^2\right)\)
Xét ΔAEF và ΔABC có
\(\widehat{AEF}=\widehat{ABC}\)(hai góc đồng vị, EF//BC)
\(\widehat{FAE}\) chung
Do đó: ΔAEF~ΔABC
=>\(\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=\dfrac{1}{9}\)
=>\(S_{AEF}=\dfrac{10.8}{9}=1,2\left(dm^2\right)\)
Ta có: \(S_{AEF}+S_{MEFP}=S_{AMP}\)
=>\(S_{MEFP}+1,2=4,8\)
=>\(S_{MEFP}=3,6\left(dm^2\right)\)
\(A=\dfrac{2}{6x-5-9x^2}\)
\(=\dfrac{2}{-9x^2+6x-5}\)
\(=\dfrac{2}{-\left(9x^2-6x+5\right)}\)
\(=\dfrac{2}{-\left(9x^2-6x+1+4\right)}\)
\(=\dfrac{2}{-\left(3x-1\right)^2-4}\)
\(\left(3x-1\right)^2>=0\forall x\)
=>\(-\left(3x-1\right)^2< =0\forall x\)
=>\(-\left(3x-1\right)^2-4< =-4\forall x\)
=>\(A=\dfrac{2}{-\left(3x-1\right)^2-4}>=\dfrac{2}{-4}=-\dfrac{1}{2}\forall x\)
Dấu '=' xảy ra khi 3x-1=0
=>3x=1
=>\(x=\dfrac{1}{3}\)
a: Xét ΔAEH vuông tại E và ΔAHC vuông tại H có
\(\widehat{EAH}\) chung
Do đó: ΔAEH~ΔAHC
b: Ta có: ΔAEH vuông tại E
=>\(EH^2+EA^2=AH^2\)
=>\(EH^2=10^2-6^2=64=8^2\)
=>EH=8(cm)
Xét ΔAHE có AM là phân giác
nên \(\dfrac{MH}{AH}=\dfrac{ME}{AE}\)
=>\(\dfrac{MH}{10}=\dfrac{ME}{6}\)
=>\(\dfrac{MH}{5}=\dfrac{ME}{3}\)
mà MH+ME=EH=8cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{MH}{5}=\dfrac{ME}{3}=\dfrac{MH+ME}{5+3}=\dfrac{8}{8}=1\)
=>MH=5(cm); ME=3(cm)
c: Xét ΔHEC có HN là phân giác
nên \(\dfrac{EN}{NC}=\dfrac{EH}{HC}\left(1\right)\)
Xét ΔAHE có AM là phân giác
nên \(\dfrac{EM}{MH}=\dfrac{EA}{AH}\left(2\right)\)
Xét ΔEHA vuông tại E và ΔHCA vuông tại H có
\(\widehat{EAH}\) chung
Do đó: ΔEHA~ΔHCA
=>\(\dfrac{EA}{HA}=\dfrac{EH}{HC}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{EM}{MH}=\dfrac{EN}{NC}\)
Xét ΔEHC có \(\dfrac{EM}{MH}=\dfrac{EN}{NC}\)
nên MN//HC
=>MN//BC
mà AH\(\perp\)BC
nên HA\(\perp\)MN
Xét ΔAHN có
NM,HE là các đường cao
NM cắt HE tại M
Do đó: M là trực tâm của ΔAHN
=>AM\(\perp\)HN
a: Xét ΔNHM có NI là phân giác
nên \(\dfrac{IM}{IH}=\dfrac{NM}{NH}\left(1\right)\)
Xét ΔNMP có NK là phân giác
nên \(\dfrac{KP}{KM}=\dfrac{NP}{NM}\left(2\right)\)
Xét ΔNHM vuông tại H và ΔNMP vuông tại M có
\(\widehat{HNM}\) chung
Do đó: ΔNHM~ΔNMP
=>\(\dfrac{NH}{NM}=\dfrac{NM}{NP}\)
=>\(\dfrac{NM}{NH}=\dfrac{NP}{NM}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{IM}{IH}=\dfrac{KP}{KM}\)
b: Xét ΔNHI vuông tại H và ΔNMK vuông tại M có
\(\widehat{HNI}=\widehat{MNK}\)(NK là phân giác của góc MNP)
Do đó: ΔNHI~ΔNMK
=>\(\widehat{NIH}=\widehat{NKM}\)
mà \(\widehat{NIH}=\widehat{MIK}\)(hai góc đối đỉnh)
nên \(\widehat{MIK}=\widehat{MIK}\)
=>ΔMIK cân tại M
c: Ta có: ΔMIK cân tại M
mà ME là đường trung tuyến
nên ME\(\perp\)IK
Xét ΔENM vuông tại E và ΔMNK vuông tại M có
\(\widehat{ENM}\) chung
Do đó: ΔENM~ΔMNK
=>\(\dfrac{NE}{NM}=\dfrac{NM}{NK}\)
=>\(NM^2=NE\cdot NK\)
Ta có: \(\dfrac{NM}{NH}=\dfrac{NP}{NM}\)
=>\(NM^2=NP\cdot NH\)
=>\(NE\cdot NK=NP\cdot NH\)
=>\(\dfrac{NE}{NP}=\dfrac{NH}{NK}\)
Xét ΔNEH và ΔNPK có
\(\dfrac{NE}{NP}=\dfrac{NH}{NK}\)
\(\widehat{ENH}\) chung
Do đó: ΔNEH~ΔNPK
=>\(\widehat{NEH}=\widehat{NPK}\)