K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có

M,N lần lượt là trung điểm của BA,BC

=>MN là đường trung bình của ΔABC

=>MN//AC và \(MN=\dfrac{AC}{2}\)

=>\(AC=2\cdot MN=2\cdot7=14\left(cm\right)\)

b: Xét ΔCAB có

Y,N lần lượt là trung điểm của CA,CB

=>YN là đường trung bình của ΔCAB

=>YN//AB và YN=AB/2

Ta có: YN//AB

M\(\in\)AB

Do đó: YN//MB

Ta có: \(YN=\dfrac{AB}{2}\)

\(MB=\dfrac{AB}{2}\)

Do đó: YN=MB

Xét tứ giác YNBM có

YN//MB

YN=MB

Do đó: YNBM là hình bình hành

=>YB cắt NM tại trung điểm của mỗi đường

=>K là trung điểm của MN

Sửa đề: ΔABC vuông tại A

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔHBA~ΔABC

b: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AB^2=10^2-8^2=36=6^2\)

=>AB=6(cm)

Xét ΔABC có CD là phân giác

nên \(\dfrac{AD}{AC}=\dfrac{BD}{CB}\)

=>\(\dfrac{AD}{8}=\dfrac{BD}{10}\)

=>\(\dfrac{AD}{4}=\dfrac{BD}{5}\)

mà AD+BD=AB=6cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{4}=\dfrac{BD}{5}=\dfrac{AD+BD}{4+5}=\dfrac{6}{9}=\dfrac{2}{3}\)

=>\(AD=\dfrac{2}{3}\cdot4=\dfrac{8}{3}\left(cm\right);BD=5\cdot\dfrac{2}{3}=\dfrac{10}{3}\left(cm\right)\)

12 tháng 3 2024

a nhân d cộng 1983 nhân 1863963

AH
Akai Haruma
Giáo viên
11 tháng 3 2024

Lời giải:
Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20$ (cm) 

$AH=2S_{ABC}:BC=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6$ (cm) 

Tiếp tục áp dụng định lý Pitago:

$BH=\sqrt{AB^2-AH^2}=\sqrt{12^2-9,6^2}=7,2$ (cm)

AH
Akai Haruma
Giáo viên
11 tháng 3 2024

Hình vẽ:

loading...

1: Vận tốc của xe máy lúc đi từ B về A là x+10(km/h)

2: Thời gian xe đi từ A đến B là \(\dfrac{60}{x}\left(giờ\right)\)

Thời gian xe đi từ B về A là \(\dfrac{60}{x+10}\left(giờ\right)\)

Tổng thời gian là \(\dfrac{60}{x}+\dfrac{60}{x+10}=\dfrac{60\left(x+10+x\right)}{x\left(x+10\right)}=\dfrac{60\left(2x+10\right)}{x\left(x+10\right)}\left(giờ\right)\)

3: Tổng thời gian là:

\(\dfrac{60\left(2\cdot30+10\right)}{30\left(30+10\right)}=2\cdot\dfrac{60+10}{40}=2\cdot\dfrac{7}{4}=\dfrac{7}{2}\left(giờ\right)=3h30p\)

Người đó về A lúc:

7h+3h30p=10h30p

AH
Akai Haruma
Giáo viên
11 tháng 3 2024

Lời giải:

a. Để 2 đt song óng với nhau thì:

$3m=2m+1$

$\Leftrightarrow m=1$
b.

Để 2 đt cắt nhau:

$3m\neq 2m+1$

$\Leftrightarrow m\neq 1$

a: Để hai đồ thị hàm số y=3mx-2 và y=(2m+1)x+3 song song thì

\(\left\{{}\begin{matrix}3m=2m+1\\-2\ne3\left(đúng\right)\end{matrix}\right.\)

=>3m=2m+1

=>m=1

b: Để hai đồ thị hàm số y=3mx-2 và y=(2m+1)x+3 cắt nhau thì \(3m\ne2m+1\)

=>\(m\ne1\)

11 tháng 3 2024

Ti là gì bn

11 tháng 3 2024

gọi x(km) là quãng đường AB(x>0)

Theo đề ta có phương trình:

x60=x60+201

 

x60x80+1=0

 

x(160180)+1=0

 

1240x+1=0

 

x=240(km)

AH
Akai Haruma
Giáo viên
11 tháng 3 2024

Lời giải:

ĐKXĐ: $x\neq \pm 5$
Với $x\in\mathbb{Z}$, để $M=\frac{6x+5}{(x-5)(x+5)}\in\mathbb{Z}$ thì:

$6x+5\vdots (x-5)(x+5)(1)$

$\Rightarrow 6x+5\vdots x^2-25$
$\Rightarrow x(6x+5)\vdots x^2-25$

$\Rightarrow 6(x^2-25)+5x+150\vdots x^2-25$

$\Rightarrow 5x+150\vdots x^2-25(2)$

Từ $(1); (2)\Rightarrow 6(5x+150)-5(6x+5)\vdots x^2-25$

$\Rightarrow 875\vdots x^2-25$

$\Rightarrow x^2-25\in \left\{1; 5; 7; 25; 35; 125;175; 875\right\}$

$\Rightarrow x\in\left\{30; -30\right\}$ (do $x\in\mathbb{Z}$)

DT
11 tháng 3 2024

a) \(A=\dfrac{2x^2-4x+8}{x^3+8}\left(x\ne-2\right)\\ =\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\\ =\dfrac{2}{x+2}\)

b) Thay x=2 (TMDK) vào bt A:

\(A=\dfrac{2}{2+2}=\dfrac{2}{4}=\dfrac{1}{2}\)

 

c) \(A=\dfrac{2}{x+2}\inℤ\Rightarrow2⋮\left(x+2\right)\\ \Rightarrow x+2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\\ \Rightarrow x\in\left\{-1;-3;0;-4\right\}\) (TMDK)

d) \(A=-\dfrac{3}{2}\\ \Rightarrow\dfrac{2}{x+2}=-\dfrac{3}{2}\\ \Rightarrow-3\left(x+2\right)=4\\ \Rightarrow-3x-6=4\\ \Rightarrow3x=-10\\ \Rightarrow x=-\dfrac{10}{3}\left(TMDK\right)\)

Vậy x=-10/3 thì A=-3/2

a: Sửa đề: x<>-2

\(A=\dfrac{2x^2-4x+8}{x^3+8}\)

\(=\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)

\(=\dfrac{2}{x+2}\)

b: Thay x=2 vào A, ta được: \(A=\dfrac{2}{2+2}=\dfrac{2}{4}=\dfrac{1}{2}\)

c: Để A là số nguyên thì \(x+2\inƯ\left(2\right)\)

=>\(x+2\in\left\{1;-1;2;-2\right\}\)

=>\(x\in\left\{-1;-3;0;-4\right\}\)

d: \(A=-\dfrac{3}{2}\)

=>\(\dfrac{2}{x+2}=\dfrac{-3}{2}\)

=>\(x+2=-\dfrac{4}{3}\)

=>\(x=-\dfrac{4}{3}-2=-\dfrac{10}{3}\)