K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2023

d3//d2 \(\Rightarrow a=-1\)

d3 cắt d1 tại điểm có hoành độ bằng 1

\(\Rightarrow a+b=2\)

Ta có hệ

\(\left\{{}\begin{matrix}a=-1\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\)

24 tháng 12 2023

B= \(\dfrac{2023}{2-x}\) biểu thức B xác định ⇔ \(2-x\) \(\ne\) 0; \(x\ne\) 2

Kết luận biểu thức B xác định khi và chỉ khi \(x\) ≠ 2

24 tháng 12 2023

Do A cách trục tung một khoảng bằng 7 nên x = 7

Thay x = 7 vào y = 3x - 2, ta có:

y = 3.7 - 2 = 19

Vậy A(7; 19)

22 tháng 12 2023

Thay x = 1 vào (d₁), ta có:

y = 3.1 + 2 = 5

Thay x = 1; y = 5 vào (d₂), ta có:

-2.1 - m = 5

⇔ -2 - m = 5

⇔ m = -2 - 5

⇔ m = -7

Vậy m = -7 thì (d₁) và (d₂) cắt nhau tại điểm có hoành độ bằng 1

22 tháng 12 2023

A B C O D E H K I M N P S

a/

Ta có

\(\widehat{ABO}=\widehat{ACO}=90^o\) => B và C cùng nhìn AO dưới 1 góc \(90^o\)

=> B; C nằm trên đường tròn đường kính AO => A; B; O; C cùng nằm trên 1 đường tròn

b/

Xét tg vuông ABO và tg vuông ACO có

OA chung; OB=OC (bán kính (O)) => tg ABO = tg ACO (hai tg vuông có cạnh huyền và cạnh góc vuông bằng nhau)

Xét tg ABH và tg ACH có

AH chung

AB=AC (2 tiếp tuyến cùng xp từ 1 điểm...)

tg ABO = tg ACO (cmt) \(\Rightarrow\widehat{BAO}=\widehat{CAO}\)

=> tg ABH = tg ACH (c.g.c) \(\Rightarrow\widehat{AHB}=\widehat{AHC}\) Mà \(\widehat{AHB}+\widehat{AHC}=\widehat{BHC}=180^o\)

\(\Rightarrow\widehat{AHB}=\widehat{AHC}=90^o\Rightarrow OA\perp BC\) tại H

Ta có ID=IE (gt) \(\Rightarrow OI\perp DE\) (trong đường tròn đường thẳng đi qua tâm và trung điểm của dây cung thì vuông góc với dây cung)

Xét tg vuông AHK và tg vuông AIO có

\(\widehat{OAI}\) chung

=> tg AHK đồng dạng với tg AIO 

\(\Rightarrow\dfrac{AH}{AI}=\dfrac{AK}{AO}\Rightarrow AH.AO=AK.AI\)

c/

 

 

22 tháng 12 2023

A B H D C M O

a/

Ta có (M) tiếp xúc với AB tại H (gt) => AB là tiếp tuyến với (M)

Xét tg vuông ACM và tg vuông AHM có

AM chung

MC=MH (bán kính (M))

=> tg ACM = tg AHM (Hai tg vuông vó cạnh huyền và cạnh góc vuông tương ứng bằng nhau)

\(\Rightarrow\widehat{AMC}=\widehat{AMH}\)

C/m tương tự khi xét 2 tg vuông BDM và BHM ta cũng có

\(\widehat{BMD}=\widehat{BMH}\)

Ta có 

\(\widehat{AMH}+\widehat{BMH}=\widehat{AMB}=90^o\) (góc nt chắn nửa đường tròn)

\(\Rightarrow\widehat{AMC}+\widehat{BMD}=\widehat{AMH}+\widehat{BMH}=\widehat{AMB}=90^o\)

\(\Rightarrow\widehat{AMC}+\widehat{BMD}+\widehat{AMB}=90^o+90^o=180^o=\widehat{CMD}\)

=> C; M; D thẳng hàng

Ta có

\(AC\perp CD;BD\perp CD\) => AC//BD

b/ Ta có

AC//BD (cmt) => ACDB là hình thang

MC=MD (bán kính (M)

OA=OB=R

=> OM là đường trung bình của hình thang ACDB => OM//BD

Mà \(BD\perp CD\)

\(\Rightarrow OM\perp CD\) => CD là tiếp tuyến với (O)

c/

Ta có

AC=AH (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn)

BD=BH (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn)

\(\Rightarrow AC+BD=AH+BH=AB=2R\) không đổi

d/

Khi HC=HD => tg AHD cân tại H

Ta có MC=MD

\(\Rightarrow MH\perp CD\) (trong tg cân đường trung tuyến xp từ đỉnh tg cân đồng thời là đường cao)

Mà \(OM\perp CD\left(cmt\right)\)

\(\Rightarrow H\equiv O\) 

Xét tg AMB có

\(MH\perp AB\Rightarrow MO\perp AB\)

Mà OA=OB

=> tg AMB cân tại M (tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)

=> MA=MB => sđ cung MA = sđ cung MB (trong đường tròn 2 dây cung bằng nhau thì số đo 2 cung tương ứng bằng nhau)

=> M là điểm giưa cung AB

 

 

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Lời giải:
a. $(d)$ cắt trục tung tại điểm có tung độ $3$, tức là cắt trục tung tại điểm $(0;3)$

$(0;3)\in (d)$

$\Leftrightarrow 3=(m+2).0+2m^2+1$

$\Leftrightarrow 2m^2=2$
$\Leftrightarrow m^2=1$

$\Leftrightarrow m=\pm 1$

Khi $m=1$ thì ta có hàm số $y=3x+3$

Khi $m=-1$ thì ta có hàm số $y=x+3$ 

Bạn có thể tự vẽ 2 đths này.

b.

Để $(d)$ cắt $(d')$ thì: $m+2\neq 2m+2$

$\Leftrightarrow m\neq 0$

AH
Akai Haruma
Giáo viên
6 tháng 2 2024

Lời giải:

b/

\(\sqrt{52-16\sqrt{3}}+\sqrt{(4\sqrt{3}-7)^2}=\sqrt{48+4-2\sqrt{48.4}}+|4\sqrt{3}-7|\)

\(=\sqrt{(4\sqrt{3}-2)^2}+|4\sqrt{3}-7|\\ =|4\sqrt{3}-2|+|4\sqrt{3}-7|\\ =4\sqrt{3}-2+7-4\sqrt{3}=5\)

c/

\(=\frac{\sqrt{10}+3}{(\sqrt{10}-3)(\sqrt{10}+3)}-\frac{\sqrt{10}(\sqrt{5}+\sqrt{2})}{\sqrt{5}+\sqrt{2}}\\ =\sqrt{10}+3-\sqrt{10}=3\)

 

21 tháng 12 2023

Đường tròn

a ) Ta có : AB , AC là tiếp tuyến của (O) 

ABOB,ACOC

ˆABO+ˆACO=900+900=1800ABOC nội tiếp 

b ) Vì AB là tiếp tuyến của (O) 

ˆABE=ˆADBΔABEΔADB(g.g)

ABAD=AEABAB2=AE.AD

c ) Ta có : AC là tiếp tuyến của (O) ˆACE=ˆEBC

Mà BD // AC ˆECB=ˆEDB=ˆADB=ˆEAC

ΔEACΔECB(g.g)ˆCEA=ˆCEB

d ) Gọi COBD=F

Vì BD // AC , OCACCFBD

d(AC,BD)=CFVì AO = 3R , OB=RAB=OA2OB2=22R12BC.AO=AB.OC(=2SABOC)BC=42R3 Ta có : ˆBAO=ˆBCOΔABOΔCFB(g.g)ABCF=AOCB=BOBF22RCF=3R42R3CF=16R9