tinh
1.2+2.3+3.4+....99.100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left|x+23\right|^{2017}\ge0;\left|y-23\right|^{2015}\ge0\)
\(\Rightarrow\left|x+23\right|^{2017}+\left|y-23\right|^{2015}\ge0\)
Dấu "=" xảy ra <=> \(\orbr{\begin{cases}\left|x+23\right|^{2017}=0\\\left|y-23\right|^{2015}=0\end{cases}\Rightarrow\orbr{\begin{cases}x+23=0\\y-23=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-23\\y=23\end{cases}}}\)
Đặt A = 1.2 + 2.3 + 3.4 + ..... + n(n + 1)
3A = 1.2.3 + 2.3.3 + 3.4.3 + ..... + n(n + 1)3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + n(n + 1)[(n + 2) - (n - 1)]
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + n(n + 1)(n + 2) - (n - 1)n(n + 1)
= n(n + 1)(n + 2)
\(\Rightarrow A=\frac{N\left(N+1\right)\left(N+2\right)}{3}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{99.100.101}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)=\frac{5049}{20200}\)
Ta có:1/1.2+1/2.3+...+1/99.100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100
=100-1/100
=99/100
N=-y5+(15-4)y3-2y= -y5+11y3-2y
M=8y5-3y+1
N+M=7y5+11y3-5y+1
N-M=-9y5+11y3+y-1
Không biết đúng không nữa :)
Vì \(\left(x+y\right)^{2016}\ge0;\left|y-34\right|^{2018}\ge0\)
\(\Rightarrow\left(x+y\right)^{2016}+\left|y-34\right|^{2018}\ge0\)
Dấu "=" xảy ra <=> \(\orbr{\begin{cases}\left(x+y\right)^{2016}=0\\\left|y-34\right|^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}x+y=0\\y-34=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-34\\y=34\end{cases}}}\)
Đặt A = 1.2 + 2.3 + 3.4 + .... + n(n + 1)
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n + 1).3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ..... + n(n + 1)[(n + 2) - (n - 1)]
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + n(n + 1)(n + 2) - (n - 1)n(n + 1)
= n(n + 1)(n + 2)
\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
A=1.2.3+2.3.3+3.4.3+.....+N(N+1).3
3A=1.2(3-0)+2.3(4-1)+3.4(5-2)+........+N(N+1)-(N-2)(N-1)
3A=1.2.3-1.2.0-2.3.4-2.3.1+......+N(N-1)+(N+2)-N(N-1)-N-1
3A=N(N-1)+(N+2)/3
Đặt A = 1.2 + 2.3 + 3.4 + .... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 99.100(101 - 98)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99.100.101 - 98.99.100
= 99.100.101
\(\Rightarrow A=\frac{99.100.101}{3}=333300\)
Đặt A = 1.2 + 2.3 + 3.4 + ... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3
3A = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 99.100.( 101 - 98 )
3A = ( 1.2.3 + 2.3.4 + 3.4.5 + .... + 99.100.101 ) - ( 0.1.2 + 1.2.3 + 2.3.4 + ....+ 98.99.100 )
3A = 99.100.101 - 0.1.2
3A = 999900 - 0
3A = 999900
A = 999900 : 3
A = 333300