K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^4+8x=0\)

=>\(x\left(x^3+8\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\x^3+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

15 tháng 8 2024

\(x^4\) + 8\(x\) = 0

\(x^{ }\)(\(x^3\) + 8) = 0

\(\left[{}\begin{matrix}x=0\\x^3+8=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x^3=-8\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy \(x\) \(\in\) {-2; 0}

15 tháng 8 2024

Em cần làm gì với biểu thức này em nhỉ?

a: \(\dfrac{3x^2y}{2xy^5}=\dfrac{3}{2}\cdot\dfrac{x^2}{x}\cdot\dfrac{y}{y^5}=\dfrac{3x}{2y^4}\)

b: \(\dfrac{3x^2-3x}{x-1}=\dfrac{3x\left(x-1\right)}{x-1}=3x\)

c: \(\dfrac{ab^2-a^2b}{2a^2+a}=\dfrac{ab\left(b-a\right)}{a\left(2a+1\right)}=\dfrac{b\left(b-a\right)}{2a+1}\)

d: \(\dfrac{12\left(x^4-1\right)}{18\left(x^2-1\right)}=\dfrac{12}{18}\cdot\dfrac{\left(x^2-1\right)\left(x^2+1\right)}{x^2-1}=\dfrac{2}{3}\left(x^2+1\right)\)

e: \(\dfrac{\left(8-x\right)\left(-x-2\right)}{\left(x+2\right)^2}=\dfrac{\left(x-8\right)\left(x+2\right)}{\left(x+2\right)^2}=\dfrac{x-8}{x+2}\)

\(4x^2-y^2+4y-4\)

\(=\left(2x\right)^2-\left(y^2-4y+4\right)\)

\(=\left(2x\right)^2-\left(y-2\right)^2\)

=(2x-y+2)(2x+y-2)

a: \(\dfrac{x-x^2}{5x^2-5}=\dfrac{x}{M}\)

=>\(M=\dfrac{x\left(5x^2-5\right)}{-x^2+x}=\dfrac{5x\left(x-1\right)\left(x+1\right)}{-x\left(x-1\right)}=-5\left(x+1\right)\)

=>M=-5x-5

b: \(\dfrac{x^2+8}{2x-1}=\dfrac{3x^3+24x}{M}\)

=>\(M=\dfrac{\left(2x-1\right)\left(3x^3+24x\right)}{x^2+8}=\dfrac{\left(2x-1\right)\cdot3x\left(x^2+8\right)}{\left(x^2+8\right)}\)

=>\(M=3x\left(2x-1\right)=6x^2-3x\)

c: \(\dfrac{M}{x-y}=\dfrac{3x^2-3xy}{3\left(y-x\right)^2}\)

=>\(\dfrac{M}{x-y}=\dfrac{3x\left(x-y\right)}{3\left(x-y\right)^2}=\dfrac{x}{x-y}\)

=>M=x

15 tháng 8 2024

\(a,\left(x+2\right)^2-4\left(y+2\right)^2\\ =\left(x+2\right)^2-\left(2y+4\right)^2\\ =\left(x+2-2y-4\right)\left(x+2+2y+4\right)\\ =\left(x-2y-2\right)\left(x+2y+6\right)\\ b,x^2y^2+2xy-z^2+1\\ =\left(x^2y^2+2xy+1\right)-z^2\\ =\left(xy+1\right)^2-z^2\\ =\left(xy-z+1\right)\left(xy+z+1\right)\\ c,4x^2y^2+4xy-\left(z^2-1\right)\\ =\left(4x^2y^2+4xy+1\right)-z^2\\ =\left(2xy+1\right)^2-z^2\\ =\left(2xy-z+1\right)\left(2xy+z+1\right)\)

15 tháng 8 2024

câu c làm sai rồi 

15 tháng 8 2024

Ta có:

`2x^3+9x^2-9x+m`

`=(2x^3-x^2)+(10x^2-5x)+(-4x+2)+(m-2)`

`=x^2(2x-1)+5x(2x-1)-2(2x-1)+(m-2)` 

`=(2x-1)(x^2+5x-2)+(m-2)` 

Vì: `(2x-1)(x^2+5x-2)` chia hết cho `2x-1`

`=>m-2=0`

`=>m=2` 

15 tháng 8 2024

\(a,\dfrac{xy^2}{xy+y}=\dfrac{xy^2}{y\left(x+1\right)}=\dfrac{xy}{x+1}\\ b,\dfrac{xy-y}{x}\ne\dfrac{xy-x}{y}\\ c,\dfrac{3ac}{a^3b}=\dfrac{3c}{a^2b}=\dfrac{6c}{2a^2b}\\ d,\dfrac{3ab-3b^2}{6b^2}=\dfrac{3b\left(a-b\right)}{6b^2}=\dfrac{a-b}{2b}\\ e,\dfrac{3x\left(x-y\right)^2}{9x^2\left(x-y\right)}=\dfrac{3x\left(x-y\right)}{9x^2}=\dfrac{x-y}{3x}\\ f,\dfrac{8-x^3}{x\left(x^2+2x+4\right)}=\dfrac{-\left(x^3-8\right)}{x\left(x^2+2x+4\right)}=\dfrac{-\left(x-2\right)\left(x^2+2x+4\right)}{x\left(x^2+2x+4\right)}=\dfrac{-\left(x-2\right)}{x}=\dfrac{x-2}{-x}\)

15 tháng 8 2024

Bài 22: 

\(a^6+b^6\\ =\left(a^2\right)^3+\left(b^2\right)^3\\ =\left(a^2+b^2\right)\left[\left(a^2\right)^2-a^2b^2+\left(b^2\right)^2\right]\\ =\left(a^2+b^2\right)\left[\left(a^4+2a^2b^2+b^4\right)-3a^2b^2\right]\\ =\left(a^2+b^2\right)\left[\left(a^2+b^2\right)^2-3a^2b^2\right]\) 

Bài 24: 

a) Ta có:

`(a+b)^2=2(a^2+b^2)`

`<=>a^2+2ab+b^2=2a^2+2b^2`

`<=>a^2-2ab+b^2=0`

`<=>(a-b)^2=0`

`<=>a-b=0`

`<=>a=b`

b) Ta có: 

`a^2+b^2+c^2=ab+bc+ca`

`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`

`<=>(a^2-2ab+b^2)+(a^2-2ca+c^2)+(b^2-2bc+c^2)=0`

`<=>(a-b)^2+(a-c)^2+(b-c)^2=0`

`<=>a-b=0` và `a-c=0` và `b-c=0`

`<=>a=b=c` 

c) Ta có:

`(a+b+c)^2=3(ab+bc+bc)`

`<=>a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca`

`<=>a^2+b^2+c^2=ab+bc+ca`

`<=>(a-b)^2+(b-c)^2+(a-c)^2=0`

`<=>a=b=c`