Tính tổng:
S = 1 + 3 + 5 +......+ 2001 + 2003
* Trình bày rõ ràng, cụ thể nhé !!
Giúp mik với!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái vụ "Tam giác AID.." là chứng minh hả?
Thôi, làm vế sau trước nhé.
Ta có \(\Delta AIQ\)cân tại I
\(\Rightarrow ID\)vừa là phân giác vừa là đường cao
\(\Rightarrow ID⊥AQ\)tại D
a) \(\left|x-7\right|+\left|x+5\right|=\left|7-x\right|+\left|x+5\right|\ge\left|7-x+x+5\right|=12\)
Dấu "=" xảy ra khi \(-5\le x\le7\)
b) Đặt \(\left|2x-1\right|=t\left(t\ge0\right)\)
ta được \(t^2-3t+2=\left(t^2-2.\frac{3}{2}.x+\frac{9}{4}\right)-\frac{1}{4}=\left(t-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu "=" xảy ra khi \(\left(t-\frac{3}{2}\right)^2=0\Leftrightarrow t-\frac{3}{2}=0\Leftrightarrow t=\frac{3}{2}\Leftrightarrow\left|2x-1\right|=\frac{3}{2}\)
<=>\(\orbr{\begin{cases}2x-1=-\frac{3}{2}\\2x-1=\frac{3}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-\frac{1}{2}\\2x=\frac{5}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{4}\\x=\frac{5}{4}\end{cases}}\)
Vậy...........
\(\frac{a+c}{b+c}>\frac{a}{b}\)
\(\Leftrightarrow b\left(a+c\right)>a\left(b+c\right)\)
\(\Leftrightarrow ab+bc>ab+ac\)
\(\Leftrightarrow bc>ac\)
\(\Leftrightarrow b>a\)
\(\Rightarrow\frac{a}{b}< 1\) (luôn đúng)
TA CÓ\(\frac{2A-5B}{A-3B}=2\frac{A}{B}-5\) / A-3B
=\(2.\left(\frac{3}{4}\right)-5\)/ 3/4-3
=\(\frac{14}{9}\)
Lấy M là trung điểm của BD => BM=MD=DC
Dựng MN ⊥AD
Xét 2 tam giác vuông: ΔCFD và ΔMND có:
góc CDF = góc MDN (2 góc đối đỉnh)
MD=DC (cách dựng)
=> ΔCFD = ΔMND (cạnh huyền-góc nhọn)
=> DF=DN (*)
Mặt khác, ΔBED vuông tại E có: M là trung điểm => BM=ME=MD => ΔΔBMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)
Từ (*) và (**) => DF=DN=NE
=> DF=1/2DE (ĐPCM)
Số số hạng của S là : (2003 - 1) : 2 +1 = 1002 (số)
Tổng của dãy là : (2003 + 1) x 1002 : 2 = 1004004 nha bạn
số số hạng của dãy là:(2003-1):2+1=1002
tổng của dãy là:(2003+1).1002:2=1004004