Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H, kẻ EH vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC)
a) CM: tam giác AHB = tam giác AHC
b) Cho AH= 6cm, AC = 10cm. Tính HB,HC
c) CM: HE=HF
d) CM: EF song song với BC
e) CM: HA là tia phân giác của góc EHF
f) Gọi I là giao điểm của EF. Chứng minh: A,I,H thẳng hàng.
XÉT TAM GIÁC AHB VÀ TAM GIÁC AHC CÓ
AB=AC(GT)
AH CHUNG
GÓC AHB = GÓC AHC
=>TAM GIÁC AHB=TAM GIÁC AHC (CGC)
C,XÉT TAM GIÁC AHE VÀ TAM GIÁC AFH CÓ
AH CHUNG
GÓC AEH=GÓC AFH =90*
A1=A2
=>TAM GIÁC AHE=TAM GIÁC AFH (GCG)
=>HE=HF (CẠNH TƯƠNG ỨNG) A B C H