Cho tam giác nhọn ABC(AB<Ac) có góc A = 60 độ. D là trung điểm của AC. Trên tia AB lấy E sao cho AE=AD
CMR: a) tam giác ADE đều
b) tam giác DEC cân
c) CE vuông góc với AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XÉT TAM GIÁC ABD VÀ TAM GIÁC ACD CÓ
AD LÀ CẠNH CHUNG
AB=AC(GT)
GÓC BDA=GÓC CDA
=> TAM GIÁC ADB=TAM GIÁC ADC (CGC)
=> DB=CD
B,THEO (A) TAM GIÁC ABD= TAM GIÁC ADC
=>\(\widehat{BAD}=\widehat{CAD}\)
=>AD LÀ TIA PHÂN GIÁC CỦA GÓC A
C;XÉT TAM GIÁC BHD VÀ TAM GIÁC KDC CÓ
BD=DC (THEO A)
\(\widehat{H}=\widehat{K}\)
\(\widehat{B}=\widehat{C}\) (VÌ TAM GIÁC ABC CÂN)
=>\(\Delta BHD=\Delta CKD\left(GCG\right)\)
=>BH=CK
D;XÉT TAM GIÁC AHD VÀ TAM GIÁC ADK CÓ
AH=AK(GT)
AD LÀ CẠNH CHUNG
GÓC AHD=GÓC AKD=90*
=>\(\Delta AHD=\Delta ADK\)
=>DH=DK=> TAM GIÁC DHK CÂN TẠI D
45a=(9.5)a=(32.5)a=32a.5a
3a+1.5b=45a=32a.5a => \(\hept{\begin{cases}3^{a+1}=3^{2a}\\5^b=5^a\end{cases}}=>\hept{\begin{cases}a+1=2a\\a=b\end{cases}}\)=> a=b=1