K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left[\left(-21,8\right)+4,125\right]+\left[11,8+\left(-2,125\right)\right]\)

=-21,8+4,125+11,8-2,125

=(4,125-2,125)+(-21,8+11,8)

=2-10

=-8

b: \(\left(-124,5\right)+\left(-6,24+124,5\right)\)

\(=-124,5-6,24+124,5\)

=-6,24

4
456
CTVHS
1 tháng 7 2024

\(a,\left[\left(-21,8\right)+4,125\right]+\left[11,8+\left(-2,125\right)\right]\)

\(=-21,8+4,125+11,8-2,125\)

\(=\left[\left(-21,8\right)+11,8\right]+\left(4,125-2,125\right)\)

\(=-10+2\)

\(=-8\)

\(b,\left(-124,5\right)+\left(-6,24+124,5\right)\)

\(=-124,5-6,24+124,5\)

\(=\left[\left(-124,5\right)+124,5\right]-6,24\)

\(=0-6,24\)

\(=-6,24\)

$\color{#90EE90}{\text{4}}$  $\color{#B0E0E6}{\text{56}}$

1 tháng 7 2024

a) 

\(\left(-12,5\right)+3.4+12,5+\left(-3,4\right)\\ =\left(12,5-12,5\right)+\left(3,4-3,4\right)\\ =0+0=0\)

b) 

\(32,8+4,2+\left(-4,3\right)+\left(-32,8\right)+4,3\\ =\left(32,8-32,8\right)+\left(4,3-4,3\right)+4,2\\ =0+0+4,2\\ =4,2\)

c) 

\(-\left(42,5+150\right)\cdot2,5-7,5\cdot2,5\\ =2,5\left(-42,5-150-7,5\right)\\ =2,5\cdot\left(-50-150\right)\\ =2,5\cdot-200\\ =-500\) 

d) 

\(\left(-2,45\right)\cdot2,6+2,6\cdot\left(-7,55\right)\\ =2,6\cdot\left(-2,45-7,55\right)\\ =2,6\cdot-10\\ =-26\)

a: \(\left(-12,5\right)+3,4+12,5+\left(-3,4\right)\)

\(=\left(-12,5+12,5\right)+\left(3,4-3,4\right)\)

=0+0=0

b: \(32,8+4,2+\left(-4,3\right)+\left(-32,8\right)+4,3\)

\(=\left(32,8-32,8\right)+\left(4,3-4,3\right)+4,2\)

=0+0+4,2

=4,2

c: \(-\left(42,5+150\right)\cdot2,5-7,5\cdot2,5\)

\(=2,5\cdot\left(-42,5-150-7,5\right)\)

\(=2,5\cdot\left(-200\right)=-500\)

d: Sửa đề: \(\left(-2,45\right)\cdot2,6+2,6\cdot\left(-7,55\right)\)

\(=2,6\left(-2,45-7,55\right)\)

\(=2,6\cdot\left(-10\right)=-26\)

a: \(\left(-\dfrac{2}{3}-\dfrac{3}{7}\right):\dfrac{4}{5}+\left(-\dfrac{1}{3}+\dfrac{4}{7}\right):\dfrac{4}{5}\)

\(=\left(-\dfrac{2}{3}-\dfrac{3}{7}-\dfrac{1}{3}+\dfrac{4}{7}\right):\dfrac{4}{5}\)

\(=\left(-1+\dfrac{1}{7}\right)\cdot\dfrac{5}{4}=\dfrac{-6}{7}\cdot\dfrac{5}{4}=\dfrac{-30}{28}=-\dfrac{15}{14}\)

b: \(\dfrac{5}{9}:\left(\dfrac{1}{11}-\dfrac{5}{22}\right)+\dfrac{5}{9}:\left(\dfrac{1}{15}-\dfrac{2}{3}\right)\)

\(=\dfrac{5}{9}:\dfrac{-3}{22}+\dfrac{5}{9}:\left(\dfrac{1}{15}-\dfrac{10}{15}\right)\)

\(=\dfrac{5}{9}\cdot\dfrac{-22}{3}+\dfrac{5}{9}:\dfrac{-9}{15}\)

\(=\dfrac{5}{9}\cdot\dfrac{-22}{3}+\dfrac{5}{9}\cdot\dfrac{15}{-9}\)

\(=\dfrac{5}{9}\left(-\dfrac{22}{3}-\dfrac{5}{3}\right)=\dfrac{5}{9}\cdot\dfrac{-27}{3}=\dfrac{5}{9}\cdot\left(-9\right)=-5\)

c: \(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right)\cdot\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2\)

\(=\left(\dfrac{12}{12}+\dfrac{8}{12}-\dfrac{3}{12}\right)\cdot\left(\dfrac{16}{20}-\dfrac{15}{20}\right)^2\)

\(=\dfrac{17}{12}\cdot\left(\dfrac{1}{20}\right)^2=\dfrac{17}{12}\cdot\dfrac{1}{400}=\dfrac{17}{4800}\)

d: \(2:\left(\dfrac{1}{2}-\dfrac{2}{3}\right)^2=2:\left(\dfrac{3}{6}-\dfrac{4}{6}\right)^2\)

\(=2:\left(-\dfrac{1}{6}\right)^2=2:\dfrac{1}{36}=72\)

1 tháng 7 2024

a; (- \(\dfrac{2}{3}\) - \(\dfrac{3}{7}\)): \(\dfrac{4}{5}\) + (- \(\dfrac{1}{3}\) + \(\dfrac{4}{7}\)): \(\dfrac{4}{5}\)

= (- \(\dfrac{2}{3}\) - \(\dfrac{3}{7}\)) x \(\dfrac{5}{4}\) + (- \(\dfrac{1}{3}\) + \(\dfrac{4}{7}\)) x \(\dfrac{5}{4}\)

= (- \(\dfrac{2}{3}\) - \(\dfrac{3}{7}\) - \(\dfrac{1}{3}\) + \(\dfrac{4}{7}\)) x \(\dfrac{5}{4}\)

= [ (- \(\dfrac{2}{3}\) - \(\dfrac{1}{3}\)) - (\(\dfrac{3}{7}\) - \(\dfrac{4}{7}\))] x \(\dfrac{5}{4}\)

= [ - 1 + \(\dfrac{1}{7}\)] x \(\dfrac{5}{4}\)

= [- \(\dfrac{7}{7}\) + \(\dfrac{1}{7}\)] x \(\dfrac{5}{4}\)

= - \(\dfrac{6}{7}\) x \(\dfrac{5}{4}\)

= - \(\dfrac{15}{14}\)

\(a\cdot b=420\)

=>\(\left(a;b\right)\in\){(1;420);(420;1);(2;210);(210;2);(3;140);(140;3);(4;105);(105;4);(5;84);(84;5);(6;70);(70;6);(7;60);(60;7);(10;42);(42;10);(12;35);(35;12);(14;30);(30;14);(15;28);(28;15);(20;21);(21;20)}

mà a>b>10

nên \(\left(a;b\right)\in\left\{\left(21;20\right);\left(28;15\right);\left(35;12\right);\left(30;14\right)\right\}\)

mà BCNN(a;b)=210

nên \(\left(a;b\right)\in\left\{\left(30;14\right)\right\}\)

1 tháng 7 2024

Ta có: 

\(27^n< 81^3\\ \Rightarrow\left(3^3\right)^n< \left(3^4\right)^3\\\Rightarrow 3^{3n}< 3^{12}\\ \Rightarrow3n< 12\\\Rightarrow n< \dfrac{12}{3}=4\)

Mà n là số tự nhiên nên:

\(n\in\left\{0,1,2,3\right\}\)

Vậy \(n\in\left\{0,1,2,3\right\}\)

1 tháng 7 2024

a; 285 + 470 + 115 + 230

= (285 + 115) + (470 + 230)

= 400 + 700

= 1100

b; 571 + 216 + 129 + 124

= (571 + 129) + (216  + 124)

= 700 + 340

= 1040 

1 tháng 7 2024

x chia cho 13 được thương là 17 và dư là 9

=> x : 13 = 17 (dư 9)

=> (x - 9) : 13 = 17

=> x - 9 =13 x 17

=> x - 9 = 221

=> x = 221 + 9 = 230

1 tháng 7 2024

Tổng số lượt hành khách mà nhà ga số 1 và số 2 có thể tiếp nhận mỗi năm là:

    6 526 300 + 3 514 500 = 10 040 800 (lượt)

Do tổng số khách cả ba nhà ga mà sân bay có thể tiếp nhận mỗi năm khoảng 22 851 200 lượt khách hàng nên

 

Số lượt hành khách mà nhà ga số 3 có thể tiếp nhận mỗi năm là:

22 851 200 - 10 040 800 = 12 810 400 (lượt)

Đ/s: 12 810 400 lượt khách

Đáp số: 12 810 400 lượt hành khách. à ga số 3 có thể tiếp nhận mỗi năm là:

1 tháng 7 2024

                         Giải:

Số dân của Việt Nam trong năm 2020 là:

      96 462 106 + 876 473 = 97 338 579 (người)

Kết luận: 97 338 579 (người)

 

 

 

 

9: \(A=\dfrac{\dfrac{1}{4}-5\cdot\left(\dfrac{3}{2}\right)^2}{10\dfrac{5}{9}+\left(-\dfrac{2}{3}\right)^2}=\dfrac{\dfrac{1}{4}-5\cdot\dfrac{9}{4}}{10+\dfrac{5}{9}+\dfrac{4}{9}}\)

\(=\dfrac{\dfrac{1}{4}-\dfrac{45}{4}}{10+1}=\dfrac{-44}{4}:11=-\dfrac{44}{44}=-1\)

\(B=\dfrac{5}{12}\cdot3,7-\dfrac{5}{12}\cdot6,7=\dfrac{5}{12}\cdot\left(3,7-6,7\right)\)

\(=\dfrac{5}{12}\cdot\left(-3\right)=-\dfrac{5}{4}\)

\(A-B=\left(-1\right)-\left(-\dfrac{5}{4}\right)=-1+\dfrac{5}{4}=\dfrac{1}{4}\)

10: \(P=\left(6,8;1,36-\dfrac{29}{3}:\dfrac{58}{9}\right):\dfrac{0.27^3}{0.09^3\cdot2}\)

\(=\left(5-\dfrac{29}{3}\cdot\dfrac{9}{58}\right):\dfrac{\left(0,3\right)^6\cdot3^3}{0,3^6\cdot2}\)

\(=\left(5-\dfrac{3}{2}\right):\dfrac{3^3}{2}=\dfrac{7}{2}\cdot\dfrac{2}{27}=\dfrac{7}{27}\)

\(P+\dfrac{1}{27}=\dfrac{7}{27}+\dfrac{1}{27}=\dfrac{8}{27}=\left(\dfrac{2}{3}\right)^3\)

=>\(P+\dfrac{1}{27}\) là bình phương của một số hữu tỉ