a+b+c+d+e+f=37 a+b>c+d<e+f
hỏi a+b+c+d=
biết a>b>c>d>e>f
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+2y=1\Leftrightarrow x=1-2y\Leftrightarrow A=xy=\left(1-2y\right)y=y-2y^2=\frac{1}{8}-\left(2y^2-y+\frac{1}{8}\right)=\frac{1}{8}-2\left(y^2-2.\frac{1}{4}.y+\frac{1}{16}\right)=\frac{1}{8}-2\left(y-\frac{1}{4}\right)^2\)
Vì \(\left(y-\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x-\frac{1}{4}\right)^2\ge0\Rightarrow\frac{1}{8}-2\left(y-\frac{1}{4}\right)^2\ge\frac{1}{8}\)
Dấu "=" xảy ra khi \(\left(y-\frac{1}{4}\right)^2=0\Rightarrow y-\frac{1}{4}=0\Rightarrow y=\frac{1}{4}\Rightarrow x=\frac{1}{2}\)
Vậy Amax=1/8 khi x=1/2 và y=1/4
<=> 175 = ( 87 + 4x ) : 15 + x (quy đồng VP)
<=> 175 = \(\frac{87+4x}{15}+\frac{15x}{15}\)
<=> 175 = \(\frac{87+19x}{15}\)
<=> 175.15 = 87 + 19x
<=> 2625 = 87 + 19x
<=> 2538 = 19x
<=> 2538/19 = x