Bài 1 : Cho tam giác ABC vuông tại A. Về phía ngoài tam giác ABC vẽ tam giác DBC cân tại D. Vẽ AH vuông góc với BC tại H. Chứng minh rằng \(CD^2=DH^2+AH^2\) A B C H D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- -6x3 + x2 + 5x - 2 = 0
=> -6x3 - 6x2 + 7x2 + 7x - 2x - 2 = 0
=> -6x2(x+1) + 7x(x+1) - 2(x+1) = 0
=> (x+1)(-6x2+7x-2) = 0
=> (x+1)(x2-\(\frac{7}{6}x+\frac{1}{3}\)) = 0
\(\Rightarrow\left(x+1\right)\left(x-\frac{1}{2}\right)\left(x-\frac{2}{3}\right)=0\)
=> x = -1 hoặc x = 1/2 hoặc x = 2/3
- 3x3 + 19x2 + 4x - 12 = 0
=> 3x3 + 3x2 + 16x2 + 16x - 12x - 12 = 0
=> (x+1)(3x2+16x-12)=0
=> (x+1)\(\left(x^2+\frac{16}{3}x-4\right)=0\)
=> (x+1) \(\left(x-\frac{2}{3}\right)\left(x+6\right)=0\)
=> x = -1 hoặcx = 2/3 hoặc x = -6
- 2x3 - 11x2 + 10x + 8 = 0
=> 2x3 - 4x2 - 7x2 + 14x - 4x + 8 = 0
=> 2x2(x - 2) - 7x(x - 2) - 4(x - 2) = 0
=> (x - 2)(2x2 - 7x - 4)=0
=> (x - 2)(\(x^2-\frac{7}{2}x-2\)) = 0
=> \(\left(x-2\right)\left(x-4\right)\left(x+\frac{1}{2}\right)=0\)
=> x = 2 hoặc x = 4 hoặc x = -1/2
Ta có : \(\frac{x}{2}-\frac{x}{3}=-2\)
\(\Leftrightarrow x\frac{1}{2}-x\frac{1}{3}=-2\)
\(\Leftrightarrow x\left(\frac{1}{2}-\frac{1}{3}\right)=-2\)
\(\Leftrightarrow\frac{1}{6}x=-2\)
\(\Rightarrow x=-2.6=-12\)
Nếu x là tích của 0,03 với 2 thì x là tỉ số của 6 với 100