Cho tam giác ABC vuông tại A có AB:AC=5:12 VÀ BC=26cm
Tính độ dài cạnh AB và AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x2 + 3x = 0
=> x.(x + 3) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
a, Áp dụng định lý Py-ta-go ta có :
\(^{BC^2=AB^2+AC^2}\)
Mà BC = 10cm
=> \(100cm=AB^2+AC^2\)
Ta co AB tỉ lệ với 3 ; AC tỉ lệ với 4
=> AB thuộc bội của 3 => AB^2 vừa là số chính phương , vừa là bôi của 3 (1)
AC thuộc bội của 4 => AC^2 vừa là số chính phương , vừa là bội của 4 (2)
Từ (1;2) ta có độ dài của hai cạnh AB và AC là hai số chính phương nhỏ hơn 100 và có tổng là 100
Các số chính phương nhỏ hơn 100 có 4 ; 9 ; 16 ; 25;
36 ; 49 ; 64 ; 81.
Ta thấy trong dãy trên có 81+9 và 36+64 có tổng bằng 100 => hai cạnh góc vuông là ...
do bận nên mình làm mỗi ý a , bạn tự làm nốt
Tam giác ABC vuông tại A => Áp dụng định lý pitago ta có : \(BC^2=AB^2+AC^2=26^2=676\) (cm)
\(\frac{AB}{AC}=\frac{5}{12}\Rightarrow\frac{AB}{5}=\frac{AC}{12}\Rightarrow\frac{AB^2}{25}=\frac{AC^2}{144}\) Áp dụng TCDTSBN ta có :
\(\frac{AB^2}{25}=\frac{AC^2}{144}=\frac{AB^2+AC^2}{25+144}=\frac{676}{169}=4=2^2\)
\(\Rightarrow\frac{AB}{5}=2\Rightarrow AB=10\left(cm\right)\)
\(\Rightarrow\frac{AC}{12}=2\Rightarrow AC=24\left(cm\right)\)
Vậy AB = 10 (cm); AC = 24 (cm)