Tìm số dư của biểu thức sau : \(\left(x^2-3\right)^{2017}:x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Nếu tam giác ABC là vuông thì cạnh huyền sẽ là cạnh lớn nhất
a, cạnh huyền tỉ lệ với 15 , 2 cạnh góc vuông tỉ lệ với 9 và 12
Ta thấy : \(9^2+12^2=15^2\)
Vậy tam giác ABC là tam giác vuông.
b, cạnh huyền tỉ lệ với 3 , 2 cạnh góc vuông tỉ lệ với 2.4 và 1.8
Ta thấy : \(2,4^2+1,8^2=3^2\)
Vậy tam giác ABC là tam giác vuông.
c, cạnh huyền tỉ lệ với \(4\sqrt{2}\) , 2 cạnh góc vuông tỉ lệ với 4 và 4
Ta thấy : \(4^2+4^2=\left(\text{4\sqrt{2}}\right)^2\)\(4^2+4^2=\left(4\sqrt{2}\right)^2\)
Vậy tam giác ABC là tam giác vuông.
![](https://rs.olm.vn/images/avt/0.png?1311)
Tam giác ABC vuông tại A => Áp dụng định lý pitago ta có : \(BC^2=AB^2+AC^2=26^2=676\) (cm)
\(\frac{AB}{AC}=\frac{5}{12}\Rightarrow\frac{AB}{5}=\frac{AC}{12}\Rightarrow\frac{AB^2}{25}=\frac{AC^2}{144}\) Áp dụng TCDTSBN ta có :
\(\frac{AB^2}{25}=\frac{AC^2}{144}=\frac{AB^2+AC^2}{25+144}=\frac{676}{169}=4=2^2\)
\(\Rightarrow\frac{AB}{5}=2\Rightarrow AB=10\left(cm\right)\)
\(\Rightarrow\frac{AC}{12}=2\Rightarrow AC=24\left(cm\right)\)
Vậy AB = 10 (cm); AC = 24 (cm)
x là số thực đúng không?