Một tàu thủy chạy trên một khúc sông AB. Thời gian đi xuôi dòng từ A đến B là 3 giờ 20 phút, thời gian ngược dòng từ B về A là 5 giờ. Tính vận tốc của tàu thủy khi nước yên lặng? Biết rằng vận tốc dòng nước là 4 km/h.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 8
Gọi x (đồng) là giá tiền sản phẩm loại I (0 < x < 110000)
Giá sản phẩm loại II là: 120000 - 10000 - x = 110000 - x (đồng)
Giá sản phẩm loại I sau khi có VAT: x + 100%x = 1,1x (đồng)
Giá sản phẩm loại II sau khi có VAT:
110000 - x + 0,08(110000 - x) (đồng)
Theo đề bài ta có phương trình:
1,1x + 110000 - x + 0,08(110000 - x) = 120000
0,1x + 110000 + 8800 - 0,08x = 120000
0,02x = 120000 - 110000 - 8800
0,02x = 1200
x = 1200 : 0,02
x = 60000 (nhận)
Vậy nếu không kể VAT thì phải trả sản phẩm loại I giá 60000 đồng, loại II giá 110000 - 60000 = 50000 đồng
Bài 7
Giá chiếc áo len sau khi giảm so với giá ban đầu là:
100% - 30% = 70%
Giá chiếc áo len ban đầu là:
399000 : 70% = 570000 (đồng)
Bài 6:
Gọi số áo được giao là x(cái)
(Điều kiện: \(x\in Z^+\))
Số cái áo thực tế may được là x+8(cái)
Thời gian thực tế hoàn thành công việc là:
25-1=24(ngày)
Số cái áo dự định may trong mỗi ngày là \(\dfrac{x}{25}\left(cái\right)\)
Số cái áo thực tế may được trong mỗi ngày là \(\dfrac{x+8}{24}\left(cái\right)\)
Thực tế trong mỗi ngày may được nhiều hơn dự định 2 cái nên ta có:
\(\dfrac{x+8}{24}-\dfrac{x}{25}=2\)
=>\(\dfrac{25\left(x+8\right)-24x}{600}=2\)
=>x+200=1200
=>x=1000(nhận)
vậy: Số ao được giao là 1000 cái
Bài 7:
Giá ban đầu của áo len là:
\(399000:\left(1-30\%\right)=570000\left(đồng\right)\)
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{EAB}\) chung
Do đó: ΔAEB~ΔAFC
=>\(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
=>\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\widehat{FAE}\) chung
Do đó: ΔAEF~ΔABC
b:
Gọi giao điểm của AD,BE,CF là H
Xét tứ giác AFHE có \(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)
nên AFHE là tứ giác nội tiếp
Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)
nên BFHD là tứ giác nội tiếp
Ta có: \(\widehat{HFE}=\widehat{HAE}\)(AFHE nội tiếp)
\(\widehat{HFD}=\widehat{HBD}\)(BFHD nội tiếp)
mà \(\widehat{HAE}=\widehat{HBD}\left(=90^0-\widehat{ACB}\right)\)
nên \(\widehat{HFE}=\widehat{HFD}\)
=>\(\widehat{CFE}=\widehat{CFD}\)
=>FC là phân giác của góc EFD
a: Xét ΔIAB và ΔIMD có
\(\widehat{IAB}=\widehat{IMD}\)(hai góc so le trong, AB//MD)
\(\widehat{AIB}=\widehat{MID}\)(hai góc đối đỉnh)
Do đó: ΔIAB~ΔIMD
=>\(\dfrac{IA}{IM}=\dfrac{IB}{ID}=\dfrac{AB}{MD}=\dfrac{AB}{MC}\left(1\right)\)
Xét ΔKAB và ΔKCM có
\(\widehat{KAB}=\widehat{KCM}\)(hai góc so le trong, AB//CM)
\(\widehat{AKB}=\widehat{CKM}\)(hai góc đối đỉnh)
Do đó: ΔKAB~ΔKCM
=>\(\dfrac{KA}{KC}=\dfrac{KB}{KM}=\dfrac{AB}{CM}\left(2\right)\)
Từ (1),(2) suy ra \(\dfrac{KA}{KC}=\dfrac{KB}{KM}=\dfrac{IA}{IM}=\dfrac{IB}{ID}\)
=>\(\dfrac{MI}{IA}=\dfrac{MK}{KB}\)
Xét ΔMAB có \(\dfrac{MI}{IA}=\dfrac{MK}{KB}\)
nên IK//AB
Ta có: IK//AB
AB//CD
Do đó: IK//CD
b: Xét ΔMAB có IK//AB
nên \(\dfrac{IK}{AB}=\dfrac{MI}{MA}\)
=>\(\dfrac{AB}{IK}=\dfrac{MA}{MI}=1+\dfrac{IA}{IM}=1+\dfrac{AB}{MD}\)
=>\(\dfrac{AB}{IK}=1+\dfrac{AB}{\dfrac{CD}{2}}\)
=>\(\dfrac{AB}{IK}=1+\dfrac{2AB}{CD}\)
=>\(AB\left(\dfrac{1}{IK}-\dfrac{2}{CD}\right)=1\)
=>\(\dfrac{1}{IK}-\dfrac{2}{CD}=\dfrac{1}{AB}\)
=>\(\dfrac{1}{AB}+\dfrac{2}{CD}=\dfrac{1}{IK}\)
\(\left(2x^2-3\right)^2-16\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(2x^2-3\right)^2-\left[4\left(x+3\right)\right]^2=0\)
\(\Leftrightarrow\left[\left(2x^2-3\right)-4\left(x+3\right)\right]\left[\left(2x^2-3\right)+4\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(2x^2-4x-15\right)\left(2x^2+3x+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-4x-15=0\\2x^2+3x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2\left(x^2-2x\right)-15=0\\2\left(x^2+\dfrac{3}{2}x\right)+9=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2\left(x^2-2x+1\right)-2-15=0\\2\left[x^2+2\cdot x\cdot\dfrac{3}{4}+\left(\dfrac{3}{4}\right)^2\right]-2\cdot\left(\dfrac{3}{4}\right)^2+9=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2\left(x-1\right)^2=17\\2\left(x+\dfrac{3}{4}\right)^2+\dfrac{63}{8}=0\left(\text{vô lí}\right)\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2=\dfrac{17}{2}\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{\sqrt{34}}{2}\\x-1=-\dfrac{\sqrt{34}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2+\sqrt{34}}{2}\\x=\dfrac{2-\sqrt{34}}{2}\end{matrix}\right.\)
Vậy pt đã cho có nghiệm là: \(x\in\left\{\dfrac{2+\sqrt{34}}{2};\dfrac{2-\sqrt{34}}{2}\right\}\).
Tính hợp lý:
2 19 . 2 7 3 + 15. 4 9 . 9 4 9 4 . 4 10 + 1 2 10 9 4 .4 10 +12 10 2 19 .27 3 +15.4 9 = (2 19 . 2 7 3 +15. 4 9 ) + (9 4 9 4 . 4 10 +1 2 10 9 4 .4 10 ) + (12 10 +2 19 .27 3 ) = 10 + 40 + 1 = 51Chứng minh định lý:
Kẻ AH vuông góc với BC.
Ta có:
-
ΔADE và ΔADH có:
- Góc ADE = Góc ADH (= 90 độ)
- AD chung
- Góc DAE = Góc HAD (cùng phụ với góc EAD) => ΔADE ~ ΔADH (g-g) => DE/DH = AD/AE (1)
-
ΔCDG và ΔCDH có:
- Góc CDG = Góc CDH (= 90 độ)
- CD chung
- Góc DGC = Góc HDG (cùng phụ với góc CDG) => ΔCDG ~ ΔCDH (g-g) => DG/DH = CD/CE (2)
Nhân (1) và (2), ta được:
DE/DH . DG/DH = AD/AE . CD/CE => DE . DG = AD . CD
Vậy DB . DC = DE . DG (đpcm)
a) Xét hai tam giác vuông: \(\Delta ABD\) và \(\Delta ACE\) có:
\(\widehat{A}\) chung
\(\Rightarrow\Delta ABD\) ∽ \(\Delta ACE\left(g-g\right)\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AD}{AE}\)
\(\Rightarrow AE.AB=AD.AC\)
b) Do \(\dfrac{AB}{AC}=\dfrac{AD}{AE}\left(cmt\right)\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét \(\Delta ADE\) và \(\Delta ABC\) có:
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(cmt\right)\)
\(\widehat{A}\) chung
\(\Rightarrow\Delta ADE\) ∽ \(\Delta ABC\left(g-g\right)\)
\(\Rightarrow\widehat{ADE}=\widehat{ABC}\)
3 giờ 20 phút = 10/3 giờ
Gọi x (km/h) là vận tốc của tàu thủy khi nước yên lặng (x > 4)
Vận tốc khi xuôi dòng của tàu thủy là: x + 4 (km/h)
Vận tốc ngược dòng của tàu thủy: x - 4 (km/h)
Quãng đường đi xuôi dòng: (x + 4).10/3 (km)
Quãng đường đi ngược dòng: (x - 4).5 (km)
Theo đề bài, ta có phương trình:
(x + 4).10/3 = (x - 4).5
(x + 4).10 = (x - 4).15
10x + 40 = 15x - 60
10x - 15x = -60 - 40
-5x = -100
x = -100 : (-5)
x = 20 (nhận)
Vậy vận tốc của tàu thủy khi nước yên lặng là 20 km/h
Giải toán bằng cách lập phương trình em nhé.
Giải:
Gọi vân tốc của ca nô khi nước lặng là \(x\) (km/h) ; \(x>0\)
Vận tốc ca nô xuôi dòng là: \(x+4\) (km/h)
Đổi 3 giờ 20 phút = \(\dfrac{10}{3}\) giờ
Quãng sông AB là: (\(x+4\)) x \(\dfrac{10}{3}\) (km)
Vận tốc ca nô khi ngược dòng là: \(x\) - 4 (km)
Quãng sông AB là: (\(x-4\)) x 5 (km)
Theo bài ra ta có phương trình:
(\(x+4\)) x \(\dfrac{10}{3}\) = (\(x-4\)) x 5
(\(x+4\)) x 10 = (5\(x\) - 20) x 3
10\(x\) + 40 = 15\(x\) - 60
15\(x\) - 10\(x\) = 40 + 60
5\(x\) = 100
\(x\) = 100 : 5
\(x\) = 20
Vậy vận tốc ca nô khi nước lặng là: 20 km/h