1. Tìm GTLN ( giá trị lớn nhất ) ; B= - x2 + 20x - 1
2. Cho biết: E= x2 + 2x ( y+1) + y2+ 2y + 1
Cảm ơn nhiều ạ <3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2-9=0\)
\(x^2=9\)
\(\orbr{\begin{cases}x=\sqrt{9}\\x=-\sqrt{9}\end{cases}\orbr{\begin{cases}x=3\\x=-3\end{cases}}}\)
\(b,4x^2-4=0\)
\(x^2=1\)
\(\orbr{\begin{cases}x=\sqrt{1}\\x=-\sqrt{1}\end{cases}\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
\(VT=3\left(x^2+y^2+z^2\right)-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2=\left(x+y+z\right)^2\)
\(\Leftrightarrow3x^2+3y^2+3z^2-x^2+2xy-y^2-y^2+2yz-z^2-z^2+2xz-x^2=\left(x+y+z\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=\left(x+y+z\right)^2\)* luôn đúng *
Vậ ta có đpcm
a, \(\left(2x+1\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)
\(\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow x=0;x=-2\)
b, \(\left(3x-1\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(3x-1-x-5\right)\left(3x-1+x+5\right)=0\)
\(\Leftrightarrow\left(2x-6\right)\left(4x+4\right)=0\Leftrightarrow x=3;x=-2\)
a/ xét 2 tam giác AMB và CMK có:
AM = MC (M là t/đ AC)
góc KMC = góc BMA (đối đỉnh)
MK = MB (gt)
=> tam giác AMB = tam giác CMK (c.g.c)
=> góc MAB = góc MCK = 90 độ hay KC vuông AC (đpcm)
b. xét hai tam giác AMK và CMB có:
AM = MC (M là t/đ AC)
góc AMK = góc CMB (đối đỉnh)
MK = MB (gt)
=> tg AMK = tg CMB (c.g.c)
=> góc AKM = góc CBM mà hai góc này ở vị trí sole trong nên AK // BC (đpcm)
g, sửa đề
\(5x^2-5xy+7y-7x=5x\left(x-y\right)+7\left(y-x\right)=\left(5x-7\right)\left(x-y\right)\)
h, sửa đề
\(xy-xz+z-y=x\left(y-z\right)-\left(y-z\right)=\left(x-1\right)\left(y-z\right)\)
i, \(x^3+2x^2-3x-6=x^2\left(x+2\right)-3\left(x+2\right)=\left(x^2-3\right)\left(x+2\right)\)
\(a,x^2+7x+7y-y^2\)
\(=x^2-y^2+7\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y\right)+7\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+7\right)\)
\(b,x^2-2x-9y^2+6y\)
\(=x^2-\left(3y\right)^2-2\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y\right)-2\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-2\right)\)
\(c,x^2-xy+x^3-3x^{2y}+3x^{2y}-y^3\)
\(=x\left(x-y\right)+\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=\left(x-y\right)\left(x+x^2+xy+y^2\right)\)
\(a,x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
\(b,25-4x^2-4xy-y^2\)
\(=25-\left(4x^2+4xy+y^2\right)\)
\(=5^2-\left(2x+y\right)^2\)
\(=\left(5-2x+y\right)\left(5+2x+y\right)\)
\(c,x^3-x+y^3-y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+1\right)\)
m, \(x^2+4x+4-4y^2=\left(x+2\right)^2-\left(2y\right)^2=\left(x+2-2y\right)\left(x+2+2y\right)\)
n, \(x^2+6xy+9y^2-4z^2=\left(x+3y\right)^2-\left(2z\right)^2=\left(x+3y-2z\right)\left(x+3y+2z\right)\)
\(x^4+x^2-27x-9\)
\(=x^4-27x+\left(x-3\right)\left(x+3\right)\)
\(=x\left(x^3-27\right)+\left(x-3\right)\left(x+3\right)\)
\(=x\left(x-3\right)\left(x^2+3x+9\right)+\left(x-3\right)\left(x+3\right)\)
\(=\left(x-3\right)\left(x^3+3x^2+10x+3\right)\)
1,\(B=-x^2+20x-1=-\left(x^2-20x+1\right)\)
\(=-\left(x^2-2.10x+100-99\right)=-\left(x-10\right)^2+99\le99\)
Dấu ''='' xảy ra khi x = 10
Vậy GTLN B là 99 khi x = 10
2, \(E=x^2+2x\left(y+1\right)+y^2+2y+1\)
\(2E=2x^2+4x\left(y+1\right)+2y^2+4y+2\)
\(=2x^2+4xy+4x+2y^2+4y+2\)
\(=x^2+4xy+4y^2+x^2+4x+4-2\left(y^2-2y+1\right)\)
\(=\left(x+2y\right)^2+\left(x+2\right)^2-2\left(y-1\right)^2\ge0\)
Dấu ''='' xảy ra khi x = -2 ; y = 1
Vậy GTNN E là 0 khi x = -2 ; y = 1