A B C h a H O
Tính bán kính của đường tròn (O), biết rằng dây AB của đường tròn có độ dài bằng 2a và khoảng cách từ điểm chính giữa cung AB đến dây AB bằng h.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 TH:
- TH \(P_x,P_y\) nằm về 2 phía của đường kính kẻ qua P ( TH còn lại tương tự)
Kẻ \(OI\perp P_x\) ta có:
\(IP=IE,IA=IB\)
\(\Rightarrow PI-AI=EI-BI\) hay PA=BE ( đpcm)
b) Kẻ \(OK\perp P_y\)
Trong đường tròn \(\left(O;r\right)\), vì AB>CD => OI<OK
Khi đó trong đường tròn \(\Rightarrow PE>PF\)
Theo định lý về mối quan hệ giữa dây và cung , trong đường tròn \(\left(O;R\right)\)
ta có: cung PE > cung PF ( đpcm)
Giải :
a) kẻ OH vuông góc với PE bà AB
⇒ H là trđ PE, AB
hay HP = HE, HA = HB
⇒ HP - HA = HE - HB
⇒ AP = BE.
b) kẻ OK vuông góc với PF
-Xét (O;r) có : AB > CD ( gt)
⇒ OH < OK ( mối liên hệ giữa dây và k/c từ tâm đến dây )
-Xét (O;R) có : OH < OK (cmt )
⇒ PE> PF.
Thọ tested! h heeeee
\(\sqrt{2222}\)
\(\dfrac{1}{22}\)
Giải :
a) Xét (O) có PM // AB
⇒ 2 cung AP và BM bị chắn bởi 2 dây trên sẽ bằng nhau.
mà BM = BN ( △ BMN cân tại B vì có BE vừa là đ/c, đường trung tuyến △)
⇒ cung BM = cung BN
⇒ cung AP = cung BN
b) Xét (O) có OI đi qua điểm chính giữa của PM (gt)
⇒ OI vuông góc với dây PM tại K
⇒góc OKM = 90 độ.
Xét tứ giác OKME có 3 góc vuông : góc OKM = 90 độ (cmt),
góc MEO = 90 độ ( MN vuông góc với OB tại E
góc EMK = 90 độ ( vì PM//AB, AB vuông góc với MN ⇒ PM vuông góc với MN tại M )
⇒ OKME là hcn
c) Ta có : góc OPI = góc NOE ( vì 2 góc đông vị, MP//AB)
mà góc OPI + góc POI = 90 độ ( △POK vuông tại K )
⇒góc NOE + góc POI = 90 độ
⇒ góc NOE + góc POI + góc IOE = 90 + 90 = 180 độ
⇒ P,O,N thẳng hàng
- Xét △ PMN có KE đường TB ( K trđ PM, E trđ MN )
⇒ KE//PN
a) Xét (O) có: AB đường kính (gt), F ϵ (O)
⇒ △ BAF vuông tại F.
⇒ BF vuông góc với AF tại F. hay BF vuông góc với KF
Mà CD vuông góc với KF tại K (gt)
⇒ CD//BF
⇒ 2 cung nhỏ CF và BD chắn 2 dây // của (O) sẽ bằng nhau.
⇒ Đcpcm
b) Ta thấy CDBF là hình thang cân ( CD//BF, CF = BD )
⇒ 2 đường chéo BC = DF. (1)
Mà △ BCE cân tại B ( vì có BH vừa là đ/c, vừa là đường trung tuyến của △)
⇒BC=BE.(2)
Từ (1) và (2) ⇒ DF = BE.
⇒ cung DF = cung BE
Cộng 2 vế trên với cung EF ta đc:
cung DE = cung BF
⇒ DE = BF
a) ^EAB là góc nội tiếp chắn nửa đường tròn nên ^EAB = 900 hay AE⊥AB
Có AE⊥AB (cmt) và CD⊥AB (gt) nên AE//CD => Cung AC bằng cung DE hay AC = DE (đpcm)
b) ∆AIC và ∆BID vuông tại I nên IA2 + IB2 + IC2 + ID2 = (IA2 + IC2) + (IB2 + ID2) = AC2 + BD2 = ED2 + BD2 = BE2 (∆EDB có ^EDB = 900 do nó là góc nội tiếp chắn nửa đường tròn)
Mà BE2 = (2R)2 = 4R2 nên IA2 + IB2 + IC2 + ID2 = 4R2 (đpcm)
a) ^EAB là góc nội tiếp chắn nửa đường tròn nên ^EAB = 900 hay AE⊥AB
Có AE⊥AB (cmt) và CD⊥AB (gt) nên AE//CD => Cung AC bằng cung DE hay AC = DE (đpcm)
b) ∆AIC và ∆BID vuông tại I nên IA2 + IB2 + IC2 + ID2 = (IA2 + IC2) + (IB2 + ID2) = AC2 + BD2 = ED2 + BD2 = BE2 (∆EDB có ^EDB = 900 do nó là góc nội tiếp chắn nửa đường tròn)
Mà BE2 = (2R)2 = 4R2 nên IA2 + IB2 + IC2 + ID2 = 4R2 (đpcm)
A B C D E H O M
a) Từ O kẻ OM vuông góc với AD
Khi đó theo tính chất của đường kính và dây cung thì M là trung điểm AD
Lại có O là trung điểm AE => MO là đường trung bình của tam giác ADE
=> MO // DE , lại có MO // BC (cùng vuông góc với AD)
=> DE // BC
b) Tứ giác ABDC nột tiếp đường tròn (O)
=> \(\widehat{ADB}=\widehat{BCA}\Leftrightarrow90^0-\widehat{ADB}=90^0-\widehat{BCA}\Rightarrow\widehat{CBD}=\widehat{ECB}\)
Lại có từ phần a, BED là hình thang vì có BC // DE
=> BCED là hình thang cân
a, Xét ΔADE nội tiếp đường tròn đường kính AE
=> AD ⊥ DE (1)
LẠi có AH ⊥ BC = > AD ⊥ BC (2)
Từ (1) và (2) => DE // BC ( cùng vuông góc với AD) (*)
b, Ta có: Tứ giác ABDC nội tiếp
=> ˆADBADB^= ˆACBACB^
Lại có : ˆCBDCBD^ + ˆADBADB^ = ˆACBACB^ + ˆECBECB^ ( cùng bằng 90 độ)
=> ˆCBDCBD^ = ˆECBECB^ (**)
Từ (*) và (**) => BCED là hình thang cân
bđt <=> \(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}-2\cdot\frac{x}{y}-2\cdot\frac{y}{z}-2\cdot\frac{z}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge0\)
<=> \(\left(\frac{x^2}{y^2}-2\cdot\frac{x}{y}+1\right)+\left(\frac{y^2}{z^2}-2\cdot\frac{y}{z}+1\right)+\left(\frac{z^2}{x^2}-2\cdot\frac{z}{x}+1\right)+\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)-3\ge0\)
<=> \(\left(\frac{x}{y}-1\right)^2+\left(\frac{y}{z}-1\right)^2+\left(\frac{z}{x}-1\right)^2+\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\ge3\)(1)
(1) hiển nhiên đúng vì ta có : \(\hept{\begin{cases}\left(\frac{x}{y}-1\right)^2\\\left(\frac{y}{z}-1\right)^2\\\left(\frac{z}{x}-1\right)^2\end{cases}}\ge0\forall x,y,z>0\)
lại có \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}\cdot\frac{y}{z}\cdot\frac{z}{x}}=3\)( AM-GM )
Vậy bđt ban đầu được chứng minh
Đẳng thức xảy ra <=> x = y = z
\(\Leftrightarrow\frac{x^2}{y^2}-\frac{x}{y}+\frac{y^2}{z^2}-\frac{y}{z}+\frac{z^2}{x^2}-\frac{z}{x}\ge0\)
\(\Leftrightarrow\frac{x}{y}-\frac{x}{y}+\frac{y}{z}-\frac{y}{z}+\frac{z}{x}-\frac{z}{x}\ge0\)
\(\Leftrightarrow0\ge0\)*luôn đúng*
Vậy ta có đpcm
P/s : Với bài này có thể dùng BĐT cô si cho 3 số cho VT và VP nhưng ko biết đúng ko :v
Xét 1 số có dạng \(a^4\) chia 16 có 2 khả năng dư 0 hoặc 1
Khi đó ta sẽ có: \(\hept{\begin{cases}\left(x+y\right)^4\equiv0,1\left(mod16\right)\\x^4\equiv0,1\left(mod16\right)\\y^4\equiv0,1\left(mod16\right)\end{cases}}\)
\(\Rightarrow\left(x+y\right)^4+x^4+y^4\equiv0,1,2,3\left(mod16\right)\)
Mà \(3996\equiv12\left(mod16\right)\)
=> Vô lý => PT vô nghiệm
Vậy phương trình không có nghiệm nguyên
Ta có: \(\hept{\begin{cases}x^2-2x+1+y^2=1\\\left(x-1\right)^3+y^3=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2+y^2=1\\\left(x-1\right)^3+y^3=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y-1\right)^2-2\left(x-1\right)y=1\\\left(x+y-1\right)^3-3\left(x-1\right)y\left(x+y-1\right)=1\end{cases}}\)
Đặt \(\hept{\begin{cases}x+y-1=a\\\left(x-1\right)y=b\end{cases}}\) khi đó HPT trở thành: \(\hept{\begin{cases}a^2-2b=1\\a^3-3ab=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=\frac{a^2-1}{2}\left(1\right)\\a^3-3ab=1\left(2\right)\end{cases}}}\)
Thay (1) vào (2) ta được: \(a^3-3a\cdot\frac{a^2-1}{2}=1\)
\(\Leftrightarrow2a^3-3a^3+3a=2\)
\(\Leftrightarrow a^3-3a+2=0\)\(\Leftrightarrow\left(a-1\right)^2\left(a+2\right)=0\Leftrightarrow\orbr{\begin{cases}a=1\\a=-2\end{cases}}\)
Nếu \(a=1\Rightarrow x+y-1=1\Leftrightarrow x=2-y\)
Thay vào: \(\left(2-y\right)^2+y^2=2\left(2-y\right)\)
\(\Leftrightarrow4-4y+y^2+y^2=4-2y\)
\(\Leftrightarrow2y^2-2y=0\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=2\\y=1\Rightarrow x=1\end{cases}}\)
Nếu \(a=-2\Leftrightarrow x+y-1=-2\Rightarrow y=-x-1\)
Thay vào: \(x^2+\left(x+1\right)^2=2x\)
\(\Leftrightarrow x^2+2x+1+x^2=2x\Leftrightarrow2x^2+1=0\left(voly\right)\)
Vậy \(\left(x;y\right)\in\left\{\left(1;1\right);\left(2;0\right)\right\}\)
Gọi R là độ dài bán kính của đường tròn (O)
Khi đó ta sẽ biểu diễn được: \(\hept{\begin{cases}OH=OC-HC=R-h\\OB=R\end{cases}}\)
Áp dụng định lý Pytago ta có:
\(OH^2+HB^2=OB^2\)
\(\Leftrightarrow\left(R-h\right)^2+a^2=R^2\)
\(\Leftrightarrow R^2-2Rh+h^2+a^2=R^2\)
\(\Leftrightarrow2Rh=h^2+a^2\)
\(\Rightarrow R=\frac{h^2+a^2}{2h}\)
Vậy \(R=\frac{h^2+a^2}{2h}\)
Đặt bán kính đường tròn là x
Ta có: OB=x, OC=x, HC=h, HB=a
⇒OH=OC-HC=x-h
Áp dụng định lí Pi-ta-go vào tam giác vuông OHB:
OB2 = OH2 + HB2
⇔x2=(x - h)2 + a2
⇔2xh =a2 + h2⇔x =\(\dfrac{a^2\text{ +}h^2}{2h}\)