K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác SAOB có \(\widehat{SAO}+\widehat{SBO}=90^0+90^0=180^0\)

nên SAOB là tứ giác nội tiếp

b:

Xét ΔSAO vuông tại A có \(SA^2+AO^2=SO^2\)

=>\(SA^2=8^2-4^2=48\)

=>\(SA=4\sqrt{3}\left(cm\right)\)

Xét ΔSAO vuông tại A có \(sinASO=\dfrac{AO}{OS}=\dfrac{1}{2}\)

nên \(\widehat{ASO}=30^0\)

Xét (O) có

SA,SB là các tiếp tuyến

Do đó: SO là phân giác của góc ASB và SA=SB

=>\(\widehat{ASB}=2\cdot\widehat{ASO}=60^0\)

Xét ΔSAB có SA=SB và \(\widehat{ASB}=60^0\)

nên ΔSAB đều

=>\(AB=SA=4\sqrt{3}\left(cm\right)\)

a: Xét tứ giác BEFC có \(\widehat{BEC}=\widehat{BFC}=90^0\)

nên BEFC là tứ giác nội tiếp

b: XétΔAFB vuông tại F và ΔAEC vuông tại E có

\(\widehat{FAB}\) chung

Do đó: ΔAFB~ΔAEC

=>\(\dfrac{AF}{AE}=\dfrac{AB}{AC}\)

=>\(AF\cdot AC=AB\cdot AE\)

 

1 tháng 3 2024

Nếu bạn nhìn trong hình này thì nó có phải là phân giác đâu?

29 tháng 2 2024

\(A=\sqrt{\left(3+2\sqrt{2}\right)^2}-\sqrt{8}\)

\(A=\left|3+2\sqrt{2}\right|-\sqrt{2^2\cdot2}\)

\(A=\left(3+2\sqrt{2}\right)-2\sqrt{2}\)

\(A=3+2\sqrt{2}-2\sqrt{2}\)

\(A=3\)

\(\left[sin^3a+sina\cdot sin^2\left(90-a\right)\right]:\left[sina-4\cdot cos\left(90-a\right)\right]\)

\(=\left[sin^3a+sina\cdot cos^2a\right]:\left[sina-4\cdot sina\right]\)

\(=\dfrac{sina\left(sin^2a+cos^2a\right)}{-3\cdot sina}=\dfrac{1}{-3}=-\dfrac{1}{3}\)

\(A=\dfrac{\sqrt{4+\sqrt{15}}-\sqrt{2-\sqrt{3}}+\sqrt{10}}{\sqrt{69+9\sqrt{5}}}\)

\(=\dfrac{\sqrt{8+2\sqrt{15}}-\sqrt{4-2\sqrt{3}}+2\sqrt{5}}{\sqrt{138+18\sqrt{5}}}\)

\(=\dfrac{\sqrt{5}+\sqrt{3}-\sqrt{3}+1+2\sqrt{5}}{\sqrt{135+2\cdot3\sqrt{15}\cdot\sqrt{3}+3}}\)

\(=\dfrac{3\sqrt{5}+1}{\sqrt{\left(3\sqrt{15}+\sqrt{3}\right)^2}}=\dfrac{3\sqrt{5}+1}{3\sqrt{15}+\sqrt{3}}\)

\(=\dfrac{1}{\sqrt{3}}\)

28 tháng 2 2024

pt đã cho \(\Leftrightarrow x^2-\left(y+1\right)x-2y^2+5y-6=0\) (*)

Ta tính được \(\Delta=9y^2-18y+25>0\) với mọi y.

Để (*) có nghiệm nguyên thì \(9y^2-18y+25\) là số chính phương

\(\Leftrightarrow9y^2-18y+25=z^2\left(z\inℕ,z\ge4\right)\)

\(\Leftrightarrow\left(3y-3\right)^2+16=z^2\)

\(\Leftrightarrow\left(z+3y-3\right)\left(z-3y+3\right)=16\)

Ta có bảng sau:

\(z+3y-3\) 1 -1 16 -16 2 8 -2 -8 4 -4
\(z-3y+3\) 16 -16 1 -1 -8 -2 8 2 4 -4
\(z\) \(\dfrac{17}{2}\)(l) -8 8 \(-\dfrac{11}{2}\)(l) -3 3 3 -3 4 -4
\(y\)   \(\dfrac{10}{3}\)(l) \(\dfrac{10}{3}\)(l)   \(\dfrac{8}{3}\)(l) \(\dfrac{8}{3}\)(l) \(-\dfrac{2}{3}\) \(-\dfrac{2}{3}\)(l) 1 1
                     

Vậy \(y=1\) \(\Rightarrow x^2-2x-3=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

Vậy pt đã cho có các nghiệm nguyên là \(\left(-1;1\right)\) và \(\left(3;1\right)\)

 

Gọi lãi suất mỗi năm của ngân hàng là x(%/năm)

(ĐK: x>0)

Sau 1 năm tổng số tiền (cả gốc lẫn lãi) có được là:

\(150000000\left(1+x\right)\left(đồng\right)\)

Sau 2 năm tổng số tiền (cả gốc lẫn lãi) có được là:

\(150000000\left(1+x\right)\left(1+x\right)=150000000\left(1+x\right)^2\left(đồng\right)\)

Theo đề, ta có:

\(150000000\left(x+1\right)^2=168540000\)

=>\(\left(x+1\right)^2=\dfrac{2809}{2500}\)

=>\(x+1=\dfrac{53}{50}\)

=>\(x=\dfrac{3}{50}=0,06\)(nhận)

=>Lãi suất của ngân hàng đó là 6%/năm

28 tháng 2 2024

b) Do BD//AC nên \(\widehat{KAI}=\widehat{KDB}\) (2 góc so le trong)

 Lại có \(\widehat{ABI}=\widehat{ABK}=\widehat{BDK}\) (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung BK.

 \(\Rightarrow\widehat{KAI}=\widehat{KBA}\)

c) I là trung điểm AC chứ không phải BC nhé.

 Xét tam giác IAK và IBA, ta có:

 \(\widehat{AIB}\) chung, \(\widehat{IAK}=\widehat{IBA}\left(cmt\right)\) 

 \(\Rightarrow\Delta IAK\sim\Delta IBA\left(g.g\right)\)

 \(\Rightarrow\dfrac{IA}{IB}=\dfrac{IK}{IA}\)

 \(\Rightarrow IA^2=IB.IK\)

 \(\Rightarrow IA=IC\) (vì theo câu a, \(IC^2=IB.IK\))

 \(\Rightarrow\) I là trung điểm AC.

d) CK vuông góc với đường nào trong đề bài chưa nói nhé.