Cho hai đường tròn (O ; R) và (O’ ; r), (R > r) tiếp xúc trong tại A. Dây BC của (O ; R) tiếp xúc với (O’ ; r) tại M (ba điểm A, O, M không thẳng hàng). Chứng minh tia AM là tia phân giác của góc BAC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A C B D E I O
a) Cùng bằng AD/AB=AD/AC.
b) tam giác BIE có góc AIB là góc ngoài nên góc AIB=góc IBE+góc IEB
mà góc IBE=IBD (gt) và góc IEB=góc ABD suy ra góc AIB=góc ABD+góc IBD=góc ABI
nên tam giác ABI cân tại A suy ra AI=AB=AC.
c)từ câu a) ta có BD/BE=CD/CE=DI/IE (do BI phân giác góc DBE)
suy ra CI phân giác góc DCE.
ABD =1/2 sđ BD (góc tạo bởi tiếp tuyến và dây cung )
BED =1/2 sđ BD (góc nội tiếp)
=> ABD=BED
ΔABD~ΔAEB
VÌ {BAD chung
ABD=BED
=>AB/AE = AD/AB=>AB^2= AD.AE

M A B E C m K
a/
Ta có
\(\widehat{mAC}=\widehat{AMK}\) (góc đồng vị) (1)
sđ\(\widehat{mAC}=\frac{1}{2}\) sđ cung AC (góc giữa tiếp tuyến và dây cung) (2)
sđ\(\widehat{AEC}=\frac{1}{2}\) sđ cung AC (góc nội tiếp đường tròn) (3)
\(\widehat{AEC}=\widehat{MEK}\) (góc đối đỉnh) (4)
Từ (1), (2), (3) và (4) \(\Rightarrow\widehat{AMK}=\widehat{MEK}\) (*)
Ta có
\(\widehat{ACE}=\widehat{EMK}\) (góc so le trong) (5)
sđ\(\widehat{ACE}=\frac{1}{2}\) sđ cung AE (góc nội tiếp đường tròn)(6)
sđ\(\widehat{MAK}=\frac{1}{2}\) sđ cung AE (góc giữa tiếp tuyến và dây cung) (7)
Từ (5)' (6) và (7) \(\Rightarrow\widehat{MAK}=\widehat{EMK}\) (**)
Từ (*) và (**) => tg AMK đồng dạng với tg MEK
\(\Rightarrow\frac{MK}{EK}=\frac{AK}{MK}\Rightarrow MK^2=AK.EK\left(dpcm\right)\)
b/
Ta có
sđ\(\widehat{KAB}=\frac{1}{2}\) sđ cung BE (góc nội tiếp đường tròn) (1)
sđ\(\widehat{EBK}=\frac{1}{2}\) sđ cung BE ( góc giữa tiếp tuyến và dây cung) (2)
Từ (1) và (2) \(\Rightarrow\widehat{KAB}=\widehat{EBK}\)
Xét tam giác ABK và tam giác EBK có
\(\widehat{KAB}=\widehat{EBK}\) (cmt)
\(\widehat{AKB}\) chung
=> tam giác AKB đồng dạng với tam giác EBK
\(\Rightarrow\frac{KB}{EK}=\frac{AK}{KB}\Rightarrow KB^2=AK.EK\)
Từ kết quả của câu a \(\Rightarrow MK^2=KB^2\Rightarrow MK=KB\left(dpcm\right)\)
M A B C E K
a)△AMK~△MEK( Chung góc K và góc MAK=góc ACE=góc KME)
suy ra AK/MK=MK/EK suy ra đpcm
b)△AKB~△BKE(Chung góc K và góc KAB= góc KBE)
suy ra AK/BK=KB/KE suy ra KB2=AK.KE
kết hợp câu a) suy ra đpcm.

Ta có PQI = PIA ( cùng chắn PI) nên ΔAPI ~ΔAIQ(g.g)
=> AP/AI = AI/AQ =>Ap.AQ= AI^2 ( không đổi )
Giả sử đt ngoại tiếp tấm giác BPQ cắt AB tại D (D khác B)
Khi đó tam giác ADP ~ tam giác AQB =>AD/AQ = AP/AB
hay AD.AB = AP.AQ=AI^2 ( không đổi)
Do đó điểm D là điểm cố định (đpcm)

Giải:
Nối M và K
Xét (O) có: \(\hat{AMK}\) là góc nội tiếp chắn cung nhỏ AK
\(\hat{KAB}\) là góc tạo bởi tia tiếp tuyến và dây cung chắn cung nhỏ AK
\(\Rightarrow\) \(\hat{AMK}\) = \(\hat{KAB}\) ( cùng = 1/2 cung nhỏ AK ) (1)
Xét (O') có : \(\hat{BMK}\) là góc nội tiếp chắn cung nhỏ BK
\(\hat{KBA}\) là góc tạo bởi tia tiếp tuyến và dây cung chắn cung nhỏ BK
\(\Rightarrow\) \(\hat{BMK}\) = \(\hat{KBA}\) ( cùng =1/2 cung nhỏ BK ) (2)
Từ (1) và (2) \(\Rightarrow\) \(\hat{AMK}\)+\(\hat{BMK}\)=\(\hat{KAB}\)+ \(\hat{KBA}\)
\(\Leftrightarrow\) \(\hat{AMB}\) = 50° = \(\hat{KAB}\) + \(\hat{KBA}\)
Xét △ KAB có: \(\hat{AKB}\) +(\(\hat{KAB}\) + \(\hat{KBA}\) )= 180° ( Tổng ba góc trong một tam giác)
\(\Leftrightarrow\) \(\hat{AKB}\) + 50° = 180°
\(\Leftrightarrow\)\(\hat{AKB}\) = 180°-50°
\(\Leftrightarrow\)\(\hat{AKB}\) = 130°
Vậy \(\hat{AKB}\) có số đo là 130°

cần hình ib mình mình gửi cho nhé =)
a)
Vì (O) và (O′) cắt nhau tại hai điểm A và B nên OO′ vuông AB ( định lý )
- Xét tam giác ADC
Có OO′ là đường trung bình ( vì O là trung điểm AC , O′ là trung điểm của AD)
Nên => OO′ // CD
=> AB vuông CD ( Quan hệ từ vuông góc đến song song )
Xét tam giác ADC
Có AC = AD ( vì hai đường tròn (O) và (O′) có cùng bán kính )
=> Tam giác ACD cân tại A có AB là đường cao nên AB cũng là đường trung tuyến
=> BC = BD hay cung BC = cung BD (vì (O) và (O′) là hai đường tròn bằng nhau )
b) Xét đường tròn (O′) có A , E , D cùng thuộc đường tròn và AD là đường kính nên tam giác AED vuông tại E
\(\Rightarrow DE\perp AC\Rightarrow\widehat{DEC}=90^o\)
- Xét \(\Delta DEC\)vuông tại E có B là trung điểm DC ( cmt )
\(\Rightarrow EB=\frac{DC}{2}=BD=EB\)
=> Cung EB = cung BD ( định lý )
Do đó B là điểm chính giữa cung ED

Ta có: \(4a^2+a\sqrt{2}-\sqrt{2}=0\Leftrightarrow a^2+\frac{\sqrt{2}}{4}a-\frac{\sqrt{2}}{4}=0\Leftrightarrow a^2=\frac{\sqrt{2}}{4}-\frac{\sqrt{2}}{4}a\)\(\Leftrightarrow a^4=\frac{1}{8}+\frac{1}{8}a^2-\frac{1}{4}a\Leftrightarrow a^4+a+1=\frac{1}{8}a^2+\frac{3}{4}a+\frac{9}{8}=\frac{1}{8}\left(a+3\right)^2\)\(\Rightarrow\sqrt{a^4+a+1}=\frac{1}{2\sqrt{2}}\left(a+3\right)\)(Do a > 0)
\(\Rightarrow\sqrt{a^4+a+1}-a^2=\frac{1}{2\sqrt{2}}\left(a+3\right)-\left(\frac{\sqrt{2}}{4}-\frac{\sqrt{2}}{4}a\right)=\frac{\sqrt{2}}{2}a+\frac{\sqrt{2}}{2}\)
Suy ra \(\frac{a+1}{\sqrt{a^4+a+1}-a^2}=\frac{a+1}{\frac{\sqrt{2}}{2}\left(a+1\right)}=\sqrt{2}\)
Kẻ tiếp tuyến tại A. Gọi E là giao điểm của tiếp tuyến tại A với dây BC.
Ta có: EM=EA và \(\widehat{EAM}=\widehat{EMA}\)( tính chất 2 tiếp tuyến cắt nhau)
hay \(\widehat{EAB}+\widehat{BAM}=\widehat{ECA}+\widehat{CAM}\)
Mà \(\widehat{EAB}=\widehat{ECA}\)
=> \(\widehat{BAM}=\widehat{CAM}\) hay AM là phân giác góc BAC( đpcm)
Tam giác ABD nội tiếp trong đường tròn (O) có AB là đường kính nên vuông tại D
Suy ra: AD ⊥ BD
Tứ giác BDCE là hình thoi nên EC // BD
Suy ra: EC ⊥ AD (1)
Tam giác AIC nội tiếp trong đường tròn (O’) có AC là đường kính nên vuông tại I
Suy ra: AI ⊥ CE (2)
Từ (1) và (2) suy ra AD trùng với AI
Vậy D, A, I thẳng hàng.