K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2021

thôi đi Đỗ Thùy Dương

6 tháng 8 2021

làm j chửi lăm thế, k trả lời thì thôi

DD
6 tháng 8 2021

\(4x^2+4x-9y^2-6y=\left(4x^2+4x+1\right)-\left(9y^2+6y+1\right)\)

\(=\left[\left(2x\right)^2+2.2x.1+1^2\right]-\left[\left(3y\right)^2+2.3y.1+1^2\right]\)

\(=\left(2x+1\right)^2-\left(3y+1\right)^2\)

\(=\left(2x-3y\right)\left(2x+3y+2\right)\)

6 tháng 8 2021

\(a,x^3+x^2+4\)

\(x^3-x^2+2x+2x^2-2x+4\)

\(x\left(x^2-x+2\right)+2\left(x^2-x+2\right)\)

\(x^5+x+1\)

\(x^5-x^4+x^2+x^4-x^3+x+x^3-x^2+1\)

\(x^2\left(x^3-x^2+1\right)+x\left(x^3-x^2+1\right)+\left(x^3-x^2+1\right)\)

\(\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)

6 tháng 8 2021

mn ơi gúp mình đi mà 

DD
9 tháng 8 2021

\(a^4+4b^4=a^4+4a^2b^2+4b^4-4a^2b^2=\left(a^2+2b^2\right)^2-\left(2ab\right)^2\)

\(=\left(a^2+2b^2-2ab\right)\left(a^2+2b^2+2ab\right)\)

\(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)

6 tháng 8 2021

Ta có: A(0;-4) và C(0;4) là hai điểm đối xứng qua O(0;0)

⇒ OA = OC

B(3;0) và D(-3; 0) là hai điểm đối xứng qua O(0;0)

⇒ OB = OD

Tứ giác ABCD là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

Lại có: Ox ⊥ Oy hay AC ⊥ BD.

Vậy tứ giác ABCD là hình thoi

Trong Δ∆OAB vuông tại O, theo định lý Pi-ta-go ta có:

AB2=OA2+OB2

AB2=42+32 = 16 + 9 = 25

AB = √25

Vậy chu vi của hình thoi bằng 4√25

25 tháng 3 2022

A B C D E  

Vì \(\widehat{BAC}=60^o\) nên \(\dfrac{AD}{AB}=\dfrac12\) (sẽ giải thích ở phần sau)

Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có:

\(\widehat{A}\) là góc chung

Nên \(\triangle ACE \backsim \triangle ABD (g.g) \text{theo tỉ số đồng dạng } k=\dfrac{AD}{AB}=\dfrac12\)

\(=> \dfrac{S_{\triangle{ADE}}}{S_{\triangle{ABC}}} = k^2=(\dfrac12)^2=\dfrac14\)

Vậy \( \dfrac{S_{\triangle{ADE}}}{S_{\triangle{ABC}}} = \dfrac14\)

Bình luận: Vì sao \(\dfrac{AD}{AB}=\dfrac12\)?

Chứng minh điều này như sau:

Kẻ đường trung tuyến DM của tam giác ABD.

Từ đây suy ra \(MD=\dfrac12 AB\) (định lý đường trung tuyến trong tam giác vuông)

Mà \(AM=\dfrac12 AB\) (do DM là trung tuyến)

Nên \(AM=MD\)

Do đó tam giác AMD cân tại M

Mà \(\widehat{MAD}=60^o\) (do \(\widehat{BAC}=60^o\))

Nên tam giác AMD đều

\(=>AM=AD\)

\(=>\dfrac{1}{2}AB=AD\) (DM trung tuyến)

\(=>\dfrac{AD}{AB}=\dfrac{1}{2}=>đpcm\)

25 tháng 3 2022

Vì \(\widehat{BAC}=60^o\) nên \(\dfrac{AD}{AB}=\dfrac12\) (sẽ giải thích ở phần sau)

Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có:

\(\widehat{A}\) là góc chung

Nên \(\triangle ACE \backsim \triangle ABD (g.g)\)

Từ đó tự suy ra \(\triangle ADE \backsim \triangle ABC (c.g.c) \text{ theo tỉ số đồng dạng }k=\dfrac{AD}{AB}=\dfrac12\) 

\(=> \dfrac{S_{\triangle{ADE}}}{S_{\triangle{ABC}}} = k^2=(\dfrac12)^2=\dfrac14\)

Vậy \( \dfrac{S_{\triangle{ADE}}}{S_{\triangle{ABC}}} = \dfrac14\)

Bình luận: Vì sao \(\dfrac{AD}{AB}=\dfrac12\)?

Chứng minh điều này như sau:

Kẻ đường trung tuyến DM của tam giác ABD.

Từ đây suy ra \(MD=\dfrac12 AB\) (định lý đường trung tuyến trong tam giác vuông)

Mà \(AM=\dfrac12 AB\) (do DM là trung tuyến)

Nên \(AM=MD\)

Do đó tam giác AMD cân tại M

Mà \(\widehat{MAD}=60^o\) (do \(\widehat{BAC}=60^o\))

Nên tam giác AMD đều

\(=>AM=AD\)

\(=>\dfrac{1}{2}AB=AD\) (DM trung tuyến)

\(=>\dfrac{AD}{AB}=\dfrac{1}{2}=>đpcm\)