cho a,b,c thực dương thỏa mãn abc=1. cmr: \(\frac{1}{\sqrt{a^4-a^3+ab+2}}\)+\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\)+\(\frac{1}{\sqrt{c^4-c^3+ac+2}}\)\(\le\sqrt{3}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
PN
0
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
3 tháng 2 2021
bânnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
![](https://rs.olm.vn/images/avt/0.png?1311)
TD
3 tháng 2 2021
\(\orbr{\begin{cases}\frac{2}{3}x-5=0\\\frac{4}{5}x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5:\frac{2}{3}=7,5\\x=-3:\frac{4}{5}=-3,75\end{cases}}\)
Ta có: \(\left(a^4-a^3+2\right)-\left(a+1\right)=\left(a-1\right)^2\left(a^2+a+1\right)\ge0\)\(\Rightarrow a^4-a^3+2\ge a+1\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\)
\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\)
Tương tự:\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\); \(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+c+1}}\)
\(\Rightarrow VT\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\)\(\le\sqrt{3\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)}\)\(\le\sqrt{3\left(\frac{c}{abc+ac+c}+\frac{ac}{abc^2+abc+ac}+\frac{1}{ca+c+1}\right)}\)\(\le\sqrt{3\left(\frac{c}{ac+c+1}+\frac{ac}{ac+c+1}+\frac{1}{ca+c+1}\right)}=\sqrt{3}\)(abc = 1)
Đẳng thức xảy ra khi a = b = c = 1