K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 trong 6 bài toán khó nhất thế giới :)

7 tháng 8 2023

Ta thấy: Bán kính hình trong B gấp 3 lần bán kính hình tròn A 

=> Chu vi hình B gấp 3 lần chu vi hình A.  Ta chia đường tròn lớn thành 3 phần bằng nhau bởi 3 điểm M, N, P ; mỗi phần như vậy có độ dài bằng chu vi hình A. Khi hình A lăn từ M đến N theo chiều kim đồng hồ, bán kính nối tâm hình tròn A với điểm tiếp xúc giữa 2 hình tròn (bán kính màu đen) quét một  góc 3600+1200.. Tương tự cho 2 phần còn lại, để hình A trở về điểm xuất phát thì bán kính màu đen quét 1 góc tổng cộng là 3x(3600+1200)=4x3600, tức 4 vòng quay.    

 

6 tháng 8 2023

 a) Khi vật ở trên mặt phẳng nghiêng, ta xét hệ trục tọa độ Oxy sao cho Ox song song với mặt phẳng nghiêng còn Oy trùng với phương của phản lực \(\overrightarrow{N}\). Chọn chiều (+) là chiều chuyển động của vật. Gọi \(m\left(kg\right)\) là khối lượng của vật. Khi đó \(P=10m\left(N\right)\). Hơn nữa, dễ thấy góc nghiêng so với phương ngang của mặt phẳng nghiêng là \(30^o\). Ta chiếu \(\overrightarrow{P}\) lên 2 trục Ox, Oy thành 2 lực \(\overrightarrow{P_x},\overrightarrow{P_y}\). Khi đó:

 \(P_y=P.\cos30^o=5m\sqrt{3}\left(N\right)\) và \(P_x=P.\sin30^o=5m\left(N\right)\).

 Áp dụng định luật II Newton: \(\overrightarrow{P}+\overrightarrow{N}=m.\overrightarrow{a}\) (*)

 Chiếu (*) lên Ox, ta được \(P_x=m.a\) \(\Rightarrow5m=m.a\) \(\Rightarrow a=5\left(m/s^2\right)\)

 b) Khi vật di chuyển trên mặt phẳng ngang, ta xét trên hệ trục tọa độ Oxy với Ox song song với mặt phẳng ngang còn Oy trùng với phương của phản lực \(\overrightarrow{N'}\). Vật mất \(t=\dfrac{v}{a}=\dfrac{10}{5}=2\left(s\right)\) để đi đến chân mặt phẳng nghiêng.

 Gọi \(v\) là vận tốc khi vật tới chân mặt phẳng nghiêng. Ta có \(v=\sqrt{2as}=\sqrt{2.5.10}=10m/s\)

 Áp dụng định luật II Newton: \(\overrightarrow{P}+\overrightarrow{N'}+\overrightarrow{F_{ms}}=m\overrightarrow{a'}\) (**)

 Chiếu (**) lên Oy, ta được \(N'=P=10m\left(N\right)\)

 \(\Rightarrow F_{ms}=\mu.N'=0,1.10m=m\left(N\right)\)

 Chiếu (**) lên Ox, ta được \(-F_{ms}=m.a'\Rightarrow a'=\dfrac{-F_{ms}}{m}=\dfrac{-10m}{m}=-10\left(m/s^2\right)\)

 Do đó, gọi \(s,t\) lần lượt là quãng đường vả thời gian vật đi được từ khi đến chân mặt phẳng nghiêng đến khi dừng lại.

 Khi đó \(t=\dfrac{-v}{a'}=\dfrac{-10}{-10}=1\left(s\right)\) và \(s=vt+\dfrac{1}{2}a't^2=10.1+\dfrac{1}{2}.\left(-10\right).1^2=5\left(m\right)\)

 Như vậy, tổng quãng đường, thời gian vật đi được cho tới khi dừng lại là:

 \(S=10+5=15\left(m\right)\)

 \(T=2+1=3\left(s\right)\)

 

7 tháng 8 2023

Chọn hệ quy chiếu Oxy như hình vẽ, chiều dương là chiều chuyển động.

Vật chịu tác dụng của các lực N;P�→;�→

 

Theo định luật II newton ta có: N+P=ma1�→+�→=��→1

Chiếu Ox ta có : Px=ma1��=��1Psinα=ma1⇒�sin�=��1

a1=gsinα=10.510=5(m/s2)⇒�1=�sin�=10.510=5�/�2

Vận tốc của vật ở chân dốc.

Áp dụng công thức v21v20=2a1s�12−�02=2�1�

v1=2a1s=2.5.10=10(m/s)⇒�1=2�1�=2.5.10=10�/�

Khi chuyển động trên mặt phẳng ngang: Chọn hệ quy chiếu Oxy như hình vẽ , chiều dương (+) Ox là chiều chuyển động .Áp dụng định luật II Newton

Ta có  Fms+N+P=ma2�→��+�→+�→=��→2

Chiếu lên trục Ox: Fms=ma2μ.N=ma2(1)−���=��2⇒−�.�=��21

Chiếu lên trục Oy: N – P = 0N = P=mg

a2=μg=0,1.10=1(m/s2)⇒�2=−��=−0,1.10=−1�/�2

Để vật dừng lại thì v2=0(m/s)�2=0�/�

Áp dụng công thức: 

v22v21=2a2.s2s2=1022.(1)=50(m)�22−�12=2�2.�2⇒�2=−1022.−1=50�

Và v2=v1+a2tt=101=10(s)

5 tháng 8 2023

a) Dựng hệ trục tọa độ Oxy như hình vẽ. Chọn chiều (+) là chiều chuyển động của vật. Ta chiếu \(\overrightarrow{F_k}\) thành 2 lực \(\overrightarrow{F_{k_x}},\overrightarrow{F_{k_y}}\). Khi đó \(F_{k_x}=F_k.\cos60^o=24\left(N\right)\) và \(F_{k_y}=F_k.\sin60^o=24\sqrt{3}\left(N\right)\)

 Áp dụng định luật II Newton, ta có: \(\overrightarrow{P}+\overrightarrow{N}+\overrightarrow{F_k}+\overrightarrow{F_{ms}}=m.\overrightarrow{a}=5.\overrightarrow{a}\) (*)

 Chiếu (*) lên Oy, ta được \(N=P-F_{k_y}=50-24\sqrt{3}\left(N\right)\)

 Do đó \(F_{ms}=\mu.N=0,1\left(50-24\sqrt{3}\right)\approx0,843\left(N\right)\)

 Chiếu (*) lên Ox, ta được:

 \(F_{k_x}-F_{ms}=5.a\)

 \(\Rightarrow48-0,843=5a\Leftrightarrow a=9,43\left(m/s^2\right)\)

 b) Gọi \(v\) là giá trị vận tốc của vật sau khi vật đi được 16m. Do ban đầu vật đứng yên nên \(v_0=0\left(m/s\right)\). Ta có:

 \(v^2-v_0^2=2as\Leftrightarrow v^2=2as=2.9,43.16=301,76\) \(\Rightarrow v\approx17,37\left(m/s\right)\)

 c) Khi lực kéo dừng lại, thì chỉ còn lực ma sát trượt ảnh hưởng đến chuyển động của vật. Khi đó, gia tốc \(a'=\dfrac{-F_{ms}}{m}=-0,1686\left(m/s^2\right)\)

  Như vậy, vật sẽ chuyển động chậm dần đều với gia tốc \(a'\approx-0,1686\left(m/s^2\right)\)

6 tháng 8 2023

1. Để tìm các đa thức P(x) thỏa mãn điều kiện P(2014) = 2046 và P(x) = P(x^2 + 1) - 33 + 32, ∀x ≥ 0, ta có thể sử dụng phương pháp đệ quy. Bước 1: Xác định bậc của đa thức P(x). Vì không có thông tin về bậc của đa thức, chúng ta sẽ giả sử nó là một hằng số n. Bước 2: Xây dựng công thức tổng quát cho đa thức P(x). Với bậc n đã xác định, ta có: P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2014 vào biểu thức và giải phương trình: P(2014) = a_n * (2014)^n + a_{n-1} * (2014)^{n-1} + ... + a_0 = 2046 Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): P(x) = P(x^2+1)-33+32 Áp dụng công thức này lặp lại cho đến khi đạt được kết quả cuối cùng. 2. Để tìm các đa thức P(x) ∈ Z[x] bậc n thỏa mãn điều kiện [P(2x)]^2 = 16P(x^2), ∀x ∈ R, ta có thể sử dụng phương pháp đệ quy tương tự như trên. Bước 1: Xác định bậc của đa thức P(x). Giả sử bậc của P(x) là n. Bước 2: Xây dựng công thức tổng quát cho P(x): P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2x vào biểu thức và giải phương trình: [P(2x)]^2 = (a_n * (2x)^n + a_{n-1} * (2x)^{n-1} + ... + a_0)^2 = 16P(x^2) Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): [P(4x)]^2 = (a_n * (4x)^n + a_{n-1} * (4x)^{n-1} + ... + a_0)^2 = 16P(x^2) Lặp lại quá trình này cho đến khi đạt được kết quả cuối cùng.

 

3 tháng 8 2023

Em gặp chuyện gì không vui trong cuộc sống vậy em? Hãy chia sẻ cùng olm nhé. Vì olm.vn không chỉ là nơi truyền thụ kiến thức cho các em để các em có học vấn, rèn luyện kỹ năng sống cho các em mà còn luôn lắng nghe các tâm tư, nguyện vọng, cảm xúc của các em, là nơi các em cảm thấy được chia sẻ, quan tâm, yêu thương. Mong em sớm vượt qua những chuyện khiến em buồn chán, lấy lại nghị lực và động lực học tập, nỗ lực vươn lên trong cuộc sống và mạnh mẽ trước mọi giông tố cuộc đời em nhé. Hãy nhớ một điều dù có buồn chán đến đâu thì cũng không thể buông xuôi bản thân, hãy quý trọng bản thân, vì cuộc đời chỉ một lần được sống thì hãy sống thật an nhiên. Bất cứ khi nào em cần điểm tựa tinh thần thì olm luôn sẵn sằng là một bờ vai cho em tựa vào. Việc em lên olm chia sẻ tâm tư của bản thân ngoài đời chứng tỏ olm trong trái tim em là một nơi yên bình nhất. Vì người xưa có câu lúc muộn phiền ta muốn ở bên ai thì đó là người cho ta sự bình an nhất.

Cuối cùng olm cảm ơn em đã tin tưởng và lựa chọn olm là môi trường học tập, giao lưu, chia sẻ là điểm tựa tinh thần của em. Chúc em sớm vui trở lại thân mến!

4 tháng 8 2023

a) Phương trình chuyển động của xe a:
S = 36t (với S là quãng đường mà xe a đã đi được sau thời gian t)

Phương trình chuyển động của xe b:
S = 44t (với S là quãng đường mà xe b đã đi được sau thời gian t)

b) Quãng đường mà hai xe đã đi khi gặp nhau:
Quãng đường mà xe a đã đi được khi gặp xe b là 100 km.
Quãng đường mà xe b đã đi được khi gặp xe a là 100 km + 20 km = 120 km.

c) Để tìm thời điểm, vị trí và quãng đường mà hai xe gặp nhau, ta giải hệ phương trình:
36t = 100
44t = 120

Giải hệ phương trình trên, ta có t = 100/36  2.78 giờ.
Vị trí mà hai xe gặp nhau là S = 36 * 2.78  100 km.

d) Để xác định xe nào đến trước, ta so sánh thời gian mà hai xe cần để đến điểm c từ điểm a:
Thời gian mà xe a cần để đến c là t = 100/36  2.78 giờ.
Thời gian mà xe b cần để đến c là t = 120/44  2.73 giờ.

Vậy xe b sẽ đến điểm c trước xe a.

e) Đồ thị tọa độ của hai xe:
Đồ thị tọa độ của xe a là đường thẳng S = 36t.
Đồ thị tọa độ của xe b là đường thẳng S = 44t.

Lưu ý: Đồ thị tọa độ chỉ mô tả quãng đường mà hai xe đã đi được theo thời gian, không phải vị trí tại một thời điểm cụ thể.

 

2 tháng 8 2023

 Câu đầu tiên của đề bài là "Với mọi \(n\inℤ^+\)..." chứ không phải \(m\) nhé, mình gõ nhầm.

3 tháng 8 2023

a) Ta phân tích \(n=x_1^{a_1}.x_2^{a_2}...x_m^{a_m}\) (với \(x_1;x_2;..x_n\) là số nguyên tố ;

\(a_1;a_2;..a_m\inℕ^∗\) và là số mũ tối đa của mỗi số nguyên tố ) 

Khi đó ta có \(\sigma\left(n\right)=\left(a_1+1\right)\left(a_2+1\right)...\left(a_m+1\right)\)

mà \(\sigma\left(n\right)\) lẻ \(\Leftrightarrow\) \(a_1+1;a_2+1;...a_m+1\) lẻ

\(\Leftrightarrow a_1;a_2;..a_m\) chẵn

\(\Leftrightarrow n\) là số chính phương 

=> n luôn có dạng \(n=l^2\) 

Mặt khác  \(x_1;x_2;..x_m\) là số nguyên tố 

Nếu  \(x_1;x_2;..x_m\) đều là số nguyên tố lẻ thì l lẻ

<=> r = 0 nên n = 2r.l2 đúng (1) 

Nếu  \(x_1;x_2;..x_m\) tồn tại 1 cơ số \(x_k=2\) 

TH1 :  \(a_k\) \(⋮2\) 

\(\Leftrightarrow a_k+1\) lẻ => \(\sigma\left(n\right)\) lẻ (thỏa mãn giả thiết)

=> n có dạng n = 2r.l2 (r chẵn , l lẻ)(2) 

TH2 : ak lẻ

Ta dễ loại TH2 vì khi đó \(a_k+1⋮2\)  nên \(\sigma\left(n\right)⋮2\) (trái với giả thiết) 

Nếu  \(n=2^m\) (m \(⋮2\)) thì r = m ; l = 1 (tm) (3)

Từ (1);(2);(3) => ĐPCM 

1 tháng 8 2023

4 - 2 = 2

4 : 2 = 2

8 : 4 = 2

8 - 4 - 2 = 2

1 tháng 8 2023

câu hỏi này yêu cầu dùng tất cả các số và dấu đẻ cho 1 biểu thứ có chứa đủ 4 số 3 dấu và có kết quả bằng 2 

câu này ko dễ như thế đâu đừng chủ quan

 

31 tháng 7 2023

Bạn xem lại đề nhé, còn thiếu dữ kiện gì nhé